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Young'~ fa~torization of idempotents belonging to the symmetric groups is given a necessary and sufficient 
characterIzatIOn, by means of a lemma due to Burrow. The use of these idempotents is contrasted with 
Yaman~)Uchi's representation, and finaJly the equivalence of Lowdin's path diagram method to the group­
the~retIc~1 treatment of the angular momentum states arising from the coupling of an assemblage of spin! 
particles IS demonstrated. 

INTRODUCTION 

SUPPOSE that one is given a representation 
. r= {D(e),D(a),.··} of a group G= {e,a,"} oper­

atmg on a vector space V, and that the characters 
x1(x), X2(X), •.• of the inequivalent irreducible repre­
sentations r i = {Di(e),Di(a),· .. } of G are known. Then, 
from the theory of group representations,! there is 
known a formula for a set of idempotents 0 i 

plicitly, a more definite choice of basis may be had by 
means of the projection operators 

(2) 

which are constructed with the aid of the diagonal 
matrix elements djj(a) of rio In fact, with respect to a 
basis chosen with the aid of these operators, we may 

(
1) even be sure that G will have precisely the representa­

tion rio 

where Ii is the dimension of the representation r i and 
°G is the order of G. These idempotents project onto the 
subspace Vi of V which are stable under the action of 
G through the representation r. Therefore these stable 
subspaces reduce the representation r according to the 
inequivalent irreducible representations of G which it 
contains. If one wishes to obtain a basis for the stable 
subspaces Vi, he may be sure that among the projec­
tions of the basis vectors {:1), :2), ... :n)} of V (and 
hence among the columns of eli) there are sufficiently 
many which are linearly independent that a basis for Vi 
may be constructed. 

The use of these operators encounters two difficulties 
in practice. The first is that whereas the characters of a 
group are unique, the diagonal matrix elements of its 
irreducible representations are not, since any similarity 
transformation applied to such a representation yields 
another with the same character. This makes it imprac­
tical for one to attempt to compile tables of diagonal 
matrix elements, in the way that he may form character 
tables, for he may never be sure in advance which of the 
many equivalent representations are going to be used. 
As another aspect of this same difficulty we must 
mention the fact that it is not always easy to obtain 
any irreducible representation at all in explicit form, 
much less to find a desired equivalent representation. 

Secondly, many groups which one intends to use in 
* Visiting scientist at Quantum Chemistry Group, Uppsala practice are of such a large order that it would be 

University, Uppsala, Sweden. useless even to try to write down all the summands 

However, if the representations r i are known ex-

I Eugene Wigner, Gruppentheorie und ihre Anwendung auf die 
Quantenmechanik der Atmospektren (Friedrich Vieweg und Sohn appearing in the expression for the projection operators. 
Braunschweig, Germany, 1931), pp. 12{}-133. ' For example, one need only recall that the symmetric 
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group of degree n has n! elements, which is already a 
very large number for n= 6. Therefore one must find 
some means of simplifying formulas (1) and (2) if he 
intends to use them for a particular calculation. One 
scheme of simplification has been discussed by a 
number of authors: this is the scheme of factorizing the 
projection operators into a product of simpler operators. 

Lowdin2 has described the factorization of the pro­
jection operators belonging to the three-dimensional 
rotation group in terms of annihilation operators which 
successively remove unwanted portions of V. Melvin3 

has introduced a factorization which is dependent upon 
a certain form which the representation r i may 
perchance exhibit, while Fokker4 has shown how a 
projection operator may sometimes be factored in 
terms of projection operators belonging to subgroups 
of G. This method was extended" to the case in which 
a group is a semidirect product of two of its subgroups. 
By the use of projective representations it is even 
possible to treat the projection operators of any group 
having a nontrivial normal subgroup in terms of 
operators belonging to the normal subgroup and factor 
group. If the normal subgroup is non-Abelian, one does 
not obtain a factorization into a simple product, but 
rather a sum of factored operators. 

Another factorization of the projection operators 
belonging to a row of a representation has long been 
used; it is Young's factorization of a set of primitive 
idempotents belonging to the symmetric groups S n. 6 

His factorization makes use of the characters belonging 
to a pair of subgroups, which are, respectively, the 
identity character a(x) = 1 of the subgroup of permuta­
tions preserving the rows of a certain Young tableau T, 
and the alternating character (3(x) = ±1 of the subgroup 
of permutations preserving the columns of the same 
tableau. These characters are themselves idempotent. 
Quite generally, if we assume that 8 is a character of a 
subgroup H and make it a function belonging to the 
convolution algebra C(GF by extending it to vanish 
outside H, we have 

(8 * 8)(x) = L 8(a)8(a-1x) 
aeG 

(3) 

Indeed, any idempotent in C(H) when so extended, 
if normalized, remains an idempotent in C(G). Unfor­
tunately, even if an idempotent is minimal in C(ll), it 

2 P. O. Ltiwdin, "Nature of the valence bond functions," Proc. 
Paris Symposium "CalcuI des Fonctions d'Onde MoJeculaires," 
1957. 

3 M. A. Melvin, Revs. Modern Phys. 28, 18 (1956). 
• A. D. Fokker, Physica 7, 385 (1940). 
6 H. V. McIntosh, "Symmetry-adapted functions belonging to 

the crystallographic groups," abstracts, Ohio State University 
Symposium "Molecular Structure and Spectroscopy," Columbus, 
Ohio, 1958, p. 22. 

6 See D. F. Rutherford, Substitutional Analysis (University 
Press, Cambridge, England), 1948. 

7 See A. Weil, L'Integration dans les Groupes Topologiques 
(Hermann & Cie, Paris, France, 1951), Chap. III. 

need not remain so in C (G). It is a surprising fact that 
the convolution a * {3, when these are the characters 
associated with a Young tableau, is nevertheless pro­
portional to a minimal idempotent. This combinatorial 
result, due to Young, 8 was given an algebraic interpre­
tation by von Neumann,9 who observed that a * u* {3 
=A(u)a * (3, whatever element u was chosen from C(Sn). 
Here X(u) is a scalar multiplier. This means that a 
projects onto certain right ideals in C(Sn), {3 onto certain 
left ideals, and that the only subspace surviving both 
projections is the subring hull of a * {3. 

Von Neumann's theorem was generalized by Burrow1o 

to apply to any group G, although, as stated by him, 
it simply constituted a sufficient condition whereby one 
could obtain a minimal idempotent and from it the 
character of an irreducible representation of G. Sup­
posing that 8 and cp were two linear characters (charac­
ters of one-dimensional representations) of subgroups R 
and C, respectively, his lemma yields a sufficient con­
dition upon the subgroups Rand C and upon the 
characters 8 and cp that 8 * cp will be proportional to a 
minimal idempotent. Nevertheless, it is possible to 
show that his requirements are actually the necessary 
and sufficient conditions for 

() * C(G) * cp=A{) * 4>, (4) 

where the set of multipliers A comprises a field. 
This result not only shows how the idempotent 

A8 * cp may be factored into idempotents belonging to 
two subgroups; it shows that the factors are extra­
ordinarily persistent, in that they perform a projection 
whenever they appear in the proper order at the 
extreme ends of an expression. In fact, if 5a is the charac­
teristic function of the element a, we find 

() * 5a * cp= { 
0 '" (aERC) 

(3(c)8 * cp a=rceRC, 
(5) 

so that it is possible to write an explicit formula for the 
projection of any function in C(G). 

YOUNG TABLEAUX 

The hypotheses of Burrow's lemma are 

. [aERC and ce(R l"'IaCa-l)]~cp(a-lca) =fJ(C)} 
(6) 

"-' (aeRC) ~ 3CE(R l"'IaCa-1)3CP(a-1ca) ~()(c). 

In applying the lemma to the symmetric groups it is 
convenient to adopt two restrictive assumptions. One 
concerns the nature of the subgroups Rand C; the 
other concerns the characters a and {3. Regarding the 
subgroups, we postulate that they must each contain 
a set of transpositions by which they are generated, 

8 See D. F. Rutherford, footnote reference 6, for a bibliography 
of Young's papers. 

9 See B. L. Van der Waerden, M oderne Algebra II (Berlin, 1931), 
Sec. 129. 

10 M. D. Burrow, Can. J. Math. 6, 498 (1954). 



                                                                                                                                    

SYMMETRY-ADAPTED FUNCTIONS 455 

just as Sn itself, for instance, is generated by the set of 
transpositions {(lk) I k= 1,2, ... , n}. Concerning the 
characters, we postulate that they be the restriction of 
either the identity character a(x) = 1 or the alternating 
character !3(x) = ± 1 to their respective subgroup. Since 
we assume Rand C to be generated by transpositions, 
it follows that their linear characters must take the 
value ± 1. Since the transpositions all belong to the 
same class in S n, a and 13 are the only linear characters 
possible; we make the second postulate to preserve this 
uniformity with respect to the classes of Sn. 

When these two restrictions are accepted, it is pos­
sible to prove a number of properties of the subgroups 
Rand C of Sn. These properties are such that we may 
introduce two equivalence relations into the set of 
digits {1,2,· .. ,n}. We call x and y R equivalent if the 
transposition (x,y) belongs to R, accepting the de­
generate transposition (x,x) as the identity. If, on the 
other hand, (x,y)eC, we call x and y C equivalent. The 
properties of Rand C are such that both these relations 
are equivalence relations. Moreover, Rand C possess 
the additional properties that x and yare not both R 
and C equivalent (for x~y), and that there is always 
a digit a such that either x and a are R equivalent and 
a and yare C equivalent or x and a are C equivalent 
and a and yare R equivalent. 

These two equivalence relations may be diagramed, 
in order that they may be more easily visualized, by 
drawing a rectangular array like that shown in Fig. 1, 
in which the R-equivalence classes are horizontal rows 
and the C-equivalence classes are vertical columns. 
The properties of Rand C are such that: (1) There is 
at most one digit in each intersection of a row and a 
column, since whenever two digits lie in the same row 
they cannot lie in the same column; (2) If x and y lie 
neither in the same row nor in the same column, then 
there is either a digit in the same row as x and the same 
column as y, or else in the same column as x and the 
same row as y. That is, if we have two diagonally 
opposite corners of a rectangle filled, then at least one 
other corner must be filled as well. This property also 
is shown in Fig. 1. 

R- class 

FIG. 1. Equivalence relation diagram. 

FIG. 2. Construction of the Young tableau. 

The diagram may be stylized yet further as shown in 
Fig. 2, by placing the longest (or one of the longest, if 
there are several) row at the top of the diagrlJ,m, so 
that it is filled solidly, and then the next longest, and 
so on, always taking care not to exceed the left margin 
established by the first row. Should there be some 
digits in the second row which are not C equivalent to 
any in the first row, they are to be placed to the extreme 
right in the diagram; however, since there are no more 
elements in the second row than in the first, this would 
create a vacancy in the second row below a filled position 
in the first; this pair of positions taken together with 
the overjutting element in the second row and the 
vacancy above it would combine to violate the second 
property of the diagram. This argument shows that 
the second row cannot overjut the first. If it is not filled 
solidly from the left margin, the columns may be rear­
ranged to make it so. A similar argument shows that 
the third row may not overjut the second, which allows 
the columns to be rearranged so that the first three 
rows are filled solidly from the left margin, and so on. 
Thus the digits {1, 2,···, n} may be arranged into a 
figure which is known in the theory of the symmetric 
groups as a Young tableau. Since the existence of the 
pair (x,y) in a common row implies that the trans­
position (x,y) belongs to R, we see that R may simply 
be described as the subgroup of permutations preserving 
the rows of the tableau T. Likewise C is the subgroup 
preserving the columns of T. 

The fact that such a derivation as this is possible 
shows that if one desires a "split idempotent" in the 
sense of Burrow's lemma for the symmetric group Sn, 
he is uniquely led (except for the two assumptions con­
cerning the subgroups and characters) to the Young 
tableaux. The converse is of course possible-one may 
show that two subgroups Rand C derived from any 
Young tableau will satisfy the postulates of Burrow's 
lemma. The only requirement necessary for the charac­
ters, other than our hypothesis that they be the re­
striction of a or 13 to their respective subgroup, is that 
they not be both the same. One must be the restriction 
of a; the other must be the restriction of 13. 

Thus the Young symmetrizers, as the quantities a * 13 
and 13 * a are called, acquire a necessary as well as a 
sufficient significance insofar as they are the factored 
idempotents determined by Burrow's lemma. 

To be of the greatest utility, as idempotent-even a 
factored primitive idempotent-should not stand alone. 
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One would prefer to have a family of commuting idem­
potents comprising a resolution of the identity. Such 
a family could be used to form an irreducible repre­
sentation of Sn, of which they would constitute the 
diagonal matrix elements. This is a requirement of 
which the Young symmetrizers fall short. Nevertheless 
it is interesting to note the way in which they fail of 
this requirement, and how they are in many instances 
acceptable as substitutes. 

It is first of all apparent that there are far more 
Young symmetrizers-n! in fact-than dimensions of 
any representation of S", and thus that these idem­
potents at the very least comprise a highly redundant 
set. That they are complete, and that tableaux of dif­
ferent shapes belong to different irreducible repre­
sentations may be shown in the usual fashion.H Thanks 
to formula (5), it may be shown that the redundancy 
is of a very simple nature, namely, that the idempotents 
all project onto the same linearly independent ideals, 
but that they each project along a different ideal, so 
that it is a matter of discarding all but one of the idem­
potents projecting upon a given ideal. 

It may be shown that when a number of Young 
idempotents project upon a given ideal, their tableaux 
differ in the respect that one can first rearrange the 
digits within the different rows, and then within the 
columns after the rows have been rearranged, to get 
the other. Therefore if one selects that tableau, among 
the many which are equivalent, for which the digits 1, 
2, "', n are to be found in increasing order along 
whatever row one selects, increasing from left to right, 
and in increasing order down any column, he has 
systematically selected one tableau from each class of 
redundant tableaux. These are the "standard tableaux" 
which play such an important role in the representation 
theory of the permutation group. 

The standard tableaux may be arranged in lexico­
graphic order according to the digits which they contain, 
and when this is done it will be found that the sym­
metrizers have the property 

(ai * (3i) * (aj * {3j)=O, i> j, (7) 

where the sUbscripts distinguish the symmetrizers 
belonging to different tableaux. With this it is found 
that one has a set of idempotents such as one obtains 
in the first stages of the proof of Wedderburn's structure 
theorem.l2 The introduction of a new set of idempotents 
defined recursively by the equations 

jr'= ft, 
N= (1-1/) * j2, 

ia'= (1-1/-1/) * fa, (8) 

jp'= (1-fr'- h'-··· -jp-r') * jp, 
----

11 See, e.g., H. Boerner, Darstellungen 'lion Gruppen (Springer­
Verlag, Berlin, Germany, 1955), Chap. IV. 

12 See, e.g., H. Boerner, DarsteUungen 'lion Gruppen (Springer­
Verlag, Berlin, Germany, 1955), Chap. IV, Satz 42, p. 61. 

where ji="A.(ai * (3i), finally yields a set of idempotents 
which serve as the diagonal matrix elements of an 
irreducible representation of Sn. By the use of Eq. (5), 
this expression may be reduced further, and yields 

j.'=(1- L b(Ui.)Offi. 
O<i<. 

+ L b(u ji)b(Ui.)Offj, + ... ) * a. * {3., (9) 
O<i<i<. 

where (T ij is the permutation which changes the tableau 
T j into the tableau T; and b(Uij) vanishes unless 
U ijERjC j. In this case we may factor U ij uniquely into 
a productuij=uikUkj such that U;kEC,., ukjERj; and 
then we may set b(Uij)={3(Uik). 

If we define 

+ L b(Uji)b(Ui.)Offj.+···), (to) 

we may set 
O<i<i<. 

j.'=Ws * a. * {3., 

=a.' * {3., 

(11) 

(12) 

thereby defining as'. Calculation shows that the general 
matrix elements of this representation, which is called 
Young's "natural" representation, are 

jii="A.a/ * Offij * {3j. 

IRREDUCIBLE REPRESENTATIONS OF 
THE SYMMETRIC GROUPS 

(13) 

Once one is in possession of these results, he may 
proceed to make certain remarks about the irreducible 
representations of the symmetric groups. First of all, 
although the idempotents of the symmetric group are 
given by the formula (2) with the diagonal matrix 
elements defined by Eq. (9), nevertheless the Young 
idempotents "A.ai * {3i project onto the correct subspaces, 
albeit along the wrong subspaces. In this sense, they 
are "almost" the projection operators conceived in 
group representation theory. 

Also, since 
(14) 

if we have 

X={:E (ai*{3i)(a)D(a)}X, (15) 
a.G 

then 

D(u ji)X = { L (Offj; * ai * (3; * OCTij) (a)D(a) }D(u ii)X 
a.G 

= { L (aj * (3i) (a)D(a) }D(u ii)X, (16) 
a.G 

and consequently we see that D(Ui') plays the role of a 
transition operator, even though Offi; is not an off-diag­
onal matrix element. Just as the idempotents "A.a; * {3i 



                                                                                                                                    

SYMMETRY-ADAPTED FUNCTIONS 457 

project along the wrong subspaces, so the elements OU;i 
are not nilpotent, but nevertheless cause the correct 
transitions between certain pairs of states. Other 
transitions will of course be described incorrectly. 

The "transition operators" ou;; may be used to 
simplify formula (9), by selecting a certain one of the 
standard tableaux, say T 1, and referring all other idem­
potents to it. Thus we have 

(17) 

or, using the correct diagonal matrix elements, 

f.'= (1- L b(CTi.)Ouil 
0<;<. 

+ L b(CT ;i)b(CTi.)oUjl+· .. ) H~1 * (31 * OUIs. (18) 
0<j<;<8 

Formula (17) has been used by Specht13 and, more 
recently, by Trainor,14 the latter to great advantage in 
certain nuclear problems15 where formula (17) proves 
to be a simplification over alternative formulas. 

By using Burrow's lemma substantially as a necessary 
and sufficient condition for the Young idempotents, we 
have obtained a clearer conception of their use in the 
theory of the symmetric groups. However, as we have 
seen, they lead to Young's "natural" representation of 
these groups, and that is by no means the only possible, 
nor even useful, representation. For example, it is not 
necessarily unitary, a requirement imposed by many 
problems. Yamanouchi,t6 Thrall,t7 and Rutherford6 

have all discussed a direct means of obtaining Young's 
"orthogonal" representation (since all the classes of S" 
are two-sided, all its irreducible representations are 
equivalent to real representationsI8). 

Their discussion is based upon an inductive scheme 
wherein one assumes that his irreducible representation, 
when restricted to the subgroup Sn-l of permutations 
leaving the digit n fixed, is reduced according to the 
irreducible representations of Sn-l. This property is of 
a recursive nature, for it is expected that upon further 
restriction of the representation to the subgroups Sn-2, 
Sn-3, ... , Sl, which have, respectively, the digits n, 
n-1; n, n-l, n-2; "'; n, »-1, ···,2 fixed, the 
representation will also be completely reduced according 
to the irreducible representations of these groups. In 
other words, one assumes that one deals with a repre­
sentation of Sn which is completely reduced over the 
chain of subgroups S,,~Sn-I~Sn-2~'" ~Sl' 

When this assumption is made, in Yamanouchi's 
derivation, one notices that the transposition (n, n-1) 
commutes with all the elements of the subgroup S,,-2, 

13 W. Specht, Math. Z. 39, 696 (1935); 42, 774 (1937). 
14 L. E. H. Trainor, Can. J. Phys. 35, 555 (1957). 
15 L. E. H. Trainor, Phys. Rev. 85, 962 (1952); 95, 801 (1954). 
1& Takehito Yamanouchi, Proc. Phys. Math. Soc. Japan (3) 19, 

436 (1937). 
11 R. M. Thrall, Duke Math. J. 8, 611 (1941). 
18 G. Frobenius and I. Schur, Sitzber. preuss. Akad. Wiss. 

Physik. math. Kl. 1906, 186. K ... 

and therefore that Schur's lemma may be invoked to 
deduce D(n, n-l). This is an inductive scheme, wherein 
D(n-1, n-2), D(n-2, n-3), ... may be determined, 
and thus the whole representation is determined (in 
principle) from the knowledge that the set of trans­
positions {(k, k-1)} generates Sn. In practice this set 
of generators is rather awkward. 

APPLICATIONS OF THE SYMMETRICAL GROUPS 

In any discussion of the properties of the represen­
tations of a group it is worthwhile to consider the 
applications to which these representations will be put, 
for they will have a bearing upon the form which it is 
desirable for the representation to take. In physics 
there are two principal applications of the general sym­
metric groups Sn, both quite distinct. One is a con­
sequence of the Pauli exclusion principle, which requires 
the wave functions of an n-particle system to belong 
either to the representation a or to the representation 
(3 of the group Son of permutations among the n par­
ticles. The other application is to the classification of 
the resultant angular momentum states arising from the 
coupling of a number of angular momenta. This latter 
application is important in the shell model theories of 
both atomic and nuclear spectroscopy and is no less 
consequential in other instances. 

The importance of the symmetric groups in the 
theory of angular momentum is founded upon a certain 
relationship between representations of the full linear 
groups and the symmetric groups. If one takes the 
primitive representation of the full linear group of 
degree n, GL(n) (by which is meant its own faithful 
representation as the set of all nonsingular nXn 
matrices), and forms its kth Kronecker power, 

D(a)flJD(a)flJ' .. flJD(a), 

he obtains a reducible representation rk of the full 
linear group, acting upon a certain vector space 
VX VX ... X V. The permutations which exchange the 
factors in this tensor power leave the Kronecker product 
unchanged, and thus induce a set of linear transforma­
tions in VX VX'" X V which commute with the 
matrices of r k • On the other hand they form a repre­
sentation II of the symmetric group Sk. It may be 
shown19 that the linear combinations of these matrices, 
which comprise «II», are the only matrices commuting 
with rk, and thus with «rk». This mutual relation 
between «II» and «rk», that they are one another's 
commuting algebras, is responsible for the use of the 
symmetric group in classifying angular momentum 
states. 

The fact that «II) and «rk» are one another's 
commuting algebras means that rk and II may be 
brought simultaneously to the form appearing in Fig. 3. 
We have supposed in reducing rk that the irreducible 
representations r i of GL(n) may occur with a multi-

19 Richard Brauer, Ann. Math. 38, 857 (1937). 
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"" ,,~ ~ "'" 
. 

,," "" "" " "I" "" "" 1"-," "I"-"" I" "" "" "" " [" " I'" "" "" ,," "'" "" " 0('11') E n ~ " " "-" '" "- "- "-
I"-" "" " I" " "''' " ,," " "I" ,," "" " - "" """ FIG. 3. rk and II. 

plicity n(i) and that r has been so reduced that these 
equiva~ent representations are equal and occupy con­
tiguous positions along the diagonal. Then, by Schur's 
lemma, IT consists of matrices having zero matrix 
elements connecting different representations r i , and 
multiples of the unit matrix connecting the equal repre­
sentations. Thus IT is also reduced, and certain irre­
ducible representations of the symmetric group S .. will 
appear along its diagonal. 

A projection operator belonging to a row of r i will 
have the form of ')'ppi, shown in Fig. 4(a), since this row 

~ ~ a rmJ 
~ ~ 

(0) (b) 

y~ 1J'{,q 

20 See George W. Pratt, Jr., Phys. Rev. 92, 278 (1953). 

occurs with a certain multiplicity in fk. A projection 
operator belonging to a row of ITi (the jth irreducible 
representation of Sk), on the other hand, has the form 
of Fig. 4(b), since the submatrices entering into IT are 
multiples of the unit matrix. These projection operators 
commute with one another, and their product, Fig. 
4(c), projects onto a single state. Thus we see that for 
a unique classification of states we require projections 
belonging both to IT and f k. 

This theory remains valid when the full linear group 
GL(n) is replaced by its unitary subgroup U(n) of the 
same degree, or even by the unitary unimodular sub­
group SU(n). When a representation of the full linear 
group is restricted to the unitary unimodular subgroup, 
it remains irreducible, although some distinct repre­
sentations of GL(n) may become equivalent. An im­
portant special case is that of the spin t representations 
of the ordinary three-dimensional rotation group. They 
comprise the 2X2 unitary unimodular group SU(2), 
and the theory which we have just outlined is applicable. 

Let us consider, as an example, the coupling of six 
spin t particles in such a fashion that their total spin 
and the z component of the total spin are constants of 
the motion. Then, by making use of the well known 
"branching rule" for angular momentum, which states 
that 

where Di is a representation of dimension 2j+ 1 of the 
rotation group, one can form the diagram20 shown in 
Fig. 5, which displays the possible angular momentum 
states as one particle at a time is added to the system 
until a total of 6 is reached. Starting with spin t for a 
single particle, we see that we may have s=t+t or 
s = t - t for the combination of two particles, yielding 
an s state or a p state. At each stage we may add or 
subtract spin t from the previously existing state 
(except to subtract from the s=O state), and thus we 

. draw as many lines leading up from a point as led to it 
altogether, and likewise as many leading down, except 
from s=O. For six particles we have a single f state, a 

(c) 

yipp".~ 

FIG. 4. Projection operators 
of r k and II. 
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fivefold degenerate d state, a ninefold degenerate p 
state, and finally five singlet states. 

The reduced form of ® 6 Dt is shown in Fig. 6, together 
with an indication of the irreducible representation of S6 
which forms the commuting algebra of each degenerate 
set. 

Wigner has shown21 that not all the irreducible repre­
sentations of Sk appear in the reduction of II, and in 
fact only those occur which belong to Young tableaux 
having not more than two rows. If the rows have 
lengths p. and II, respectively, where P.+II= k, then the 
representation whose tableau is (J.l., II) generates the 
commuting algebra of the representation D!(p.-·) of 
dimension (J.l.- 11+ 1) of the rotation group. 

Lowdin2 has obtained a formula which yields pro­
jections, onto the states with mz=l, of the product 
basis functions for a general Kronecker product ® P D! 
of the spin t representations. It is a remarkable fact 
that these projections coincide with the result of pro-

:3 

5-2 • 

2 5 

s 

9 

o 5 

2 :3 4 5 6 

NUMBER OF PARTICLES 

DEGEN­

ERACY 

OF 

STAT E S 

FIG. 5. Possible angular momentum states. 

jection by the operator a * (3 belonging to the tableau 
Tl of Fig. 7, as is readily seen by comparing his formula 

with a * (3.,Jl(P.,II). By ell he means the projection oper­
ator onto the state of total angular momentum 1, with 
the azimuthal quantum number mz equal to 1 . .,J;(P.,II) 
is one of the product wave functions composed by p.a's 
(spin up) and 1113's (spin down) arranged in lexicographic 
order. The square bracket expression [ap.-P{3p] indicates 
an average over all the distinct permutations of a's and 
{3's in the first p. coordinates, [a P{3"-p] a similar average 
over the last II coordinates. 

To calculate a * (3.,Jl(P.,II) we note first that 

21 Eugene Wigner, footnote reference 1, Sec. XIII. 

= 
f 

FIG. 6. 0 6 D' reduced. 

with J.l.a's and 1113's, and that (3.,Jl(P.,IJ) is a sum 

(3.,Jl(J.l.,II) = (aa·· '!(3{3" .)- ({3a" '!a{3' .. ) 
-(a{3·· '!(3a" .) ... + ({3{3 .. '!aa" .)+ ... + ... , 

writing a vertical bar to separate the first J.l. from the 

last II coordinates. There are (;) terms in which pa's 

have been replaced by {3's, and each has the sign (-l)p. 
When a is applied to this expression, we observe that 
if one computes the average over all permutations of an 
expression .,J containing ~a's and 1113's, then 

since on the right-hand side one sums over distinct 
permutations only (or over permutation-values rather 
than permutations, as it were). Bearing this in mind, 
and observing that [.,J] depends only upon the number 
of {3's that .,J contains and not upon their order, we find 
that 

a * (3.,Jl(J.l.,II) = t (-l)p( ") (J.l.- p) !p! 
p-o p 

X[ap.-P{3PJp! (11- p) ![aP{3,-pJ 

=J.l.!II! i (_l)p(P.)-l 
p=O P 

x [al'-P{3p][aP{3l>-p], (20) 

t I 1
2

1"'1 1 I I 
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FIG. 8. Path diagrams. 

which, except for a numerical factor, is precisely 
Lowdin's result. 

CONCLUSION 

This result is of great practical importance, for the 
angular momentum projection operator. is a consta~t 
of the motion and therefore commutes wIth the HamIl­
tonian. The symmetry projection operators belonging 
to the symmetric group are in general not constants of 
the motion and do not commute with the Hamiltonian. 
Thus, by this result, one may use the transition oper­
ators of the symmetric group to obtain a complete and 
nonredundant set of projections, while still being able 
to write them as angular momentum projections and 
thus being able to use an operator which commutes with 
the Hamiltonian. 

In fact, the pseudo transition operators D((Tij) may 
be used to generate a complete set of symmetry adapted 
functions. In the present case we would use tJ'jI, which 
is the permutation changing the standard tabl:au TI 
(Fig. 7) into the standard tableau T j • Lowdm has 
described a diagram by means of which one may display 
the product wave functions iJ i (Jl-, v) = (aa· .. /3 ... a· .. f3). 
One starts at the origin of a Cartesian plane, and draws 
a unit segment, inclined at an angle of 45°, from the 
origin. If the first coordinate h is a, the segment 
inclines upward to the right; if ~l=fJ, it inclines down­
ward to the right. If ~2=a, another segment continues 
upward; downward if ~2=fJ; and so on. The diagrams 
in Fig. 8 illustrate afJafJ, afJfJa, and aa/3/3. 

Now there is another means of describing a Young 
tablead· namely, by a Yamanouchi symbol.22 A 
Yaman~uchi symbol is a sequence of digits (XI,X2·· ·x,,), 
and each digit Xk is simply the number of the row in 
which k sits in the tableau. Thus the tableau shown in 
Fig. 9 has the Yamanouchi symbol (2 132111). If a 
permutation is carried out on the tableau T, the sam: 
permutation 7r is to be carried out on the Yamanouchl 
symbol Y. That is, Xk becomes X .. (k). 

The Yamanouchi symbols belonging to standard 
tableaux are characterized by the fact that, reading 
from left to right, the digit t cannot occur more often 
than t-1, which in tum cannot occur more often then 
t-2, and so on. Several Young tableaux may have the 
same Yamanouchi symbol, but exactly one standard 

22 See H. A. Jahn, Proc. Roy. Soc. (London) A205, 192 (1951). 

5 2 6 

4 FIG. 9. Young tableau. 

3 

tableau corresponds to a given symbol. Specifically, in 
filling the shape with the digits 1, 2, ... , n, in their 
natural order, we always use the leftmost empty box 
in any row to contain the new digit. This ensures that 
the digits increase in order across a row, wh~le the fact 
that the previous rows must be filled at least as far 
out as the box under consideration means that only 
smaller digits can occur above any number in a given 
column. 

There is, in the spin t case, where the Young tableaux 
have at most two rows, a one-to-one correspondence 
between the product wave functions iJi(Jl-,v) and the 
Yamanouchi symbols belonging to the shape (Jl-,v) , 
namely, one identifies a with 1, /3 with 2. If one applies 
(Tjl to iJ1(Jl-, v), he obtains the new functipn iJj(Jl-,v); 
meanwhile YI becomes Y j and TI becomes Tj, and 
these transformations are all consistent, so that iJj(Jl-,v) 
corresponds to Vi, etc. If Ti is a standard ta?leau, this 
means that, in reading iJi(Jl-,V) from left to rIght, more 
a's must have occurred at any stage than (3's, and hence 
that the diagram for iJj(JL,v) must lie entirely above the 
x axis. Conversely, for any line which does lie entirely 
above the axis there is a standard tableau and hence a 
permutation (Tjl generating it, so that such a path ~ust 
correspond to a basis function. Thus a class of functlOns 
whose projections are linearly independent and non­
redundant is composed of just those functions whose 
path diagrams lie entirely above the x axis. . . 

To summarize the discussion, we have seen how It IS 

possible to factor the projection operators belonging to 
the symmetric groups, and to give a necessary and 
sufficient condition for this factorization. We have 
indicated the fact that alternative forms of the repre­
sentations are useful in certain problems, and finally we 
have demonstrated the equivalence of Lowdin's path­
diagram method to the formal group-theoretical treat­
ment of the angular momentum states formed from a 
collection of spin t particles. 
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The inverse of the overlap matrix of a cyclic system has been computed in three different ways, each 
of which throws light on a different aspect of the subject and has its own range of applicability to related 
problems. In all these derivations extensive use has been made of the properties of the Chebyshev poly­
nomials. The results hold for every cyclic symmetric matrix. 

INTRODUCTION 

I N our work on the quantum mechanics of the infinite 
linear chain with the Born-von Karman periodicity 

condition,! we encounter the problem how to obtain the 
inverse and the inverse half power of a cyclic symmetric 
matrix. Such a matrix arises if one takes into account 
the nonorthogonality of the atomic orbitals concerned. 
The importance of including overlap has already been 
emphasized in earlier work,2 thus the solution of this 
problem is of a more general interest, justifying a 
separate publication. 

In the following we shall give three alternative 
methods to obtain the inverse, each of which throws 
light on a different aspect of the subject and has its own 
range of applicability to related problems. Thus, as we 
shall show, the last method to be discussed can easily 
be extended to yield the inverse half-power of the 
relevant matrix. 

1. GENERAL PROBLEM 

If we consider n identical atoms arranged sym­
metrically on the periphery of a circle, the corresponding 
overlap matrix can be written in the following form: 

(1) 

where Si is the overlap integral between the rth and 
the (r+i)th atomic orbitals (Sn+i=Si). The special 
case n=6 (benzene) has already been treated3 in detail 
and the following results, equally valid for the general 
case, were obtained: 

(a) The matrix can be transformed to diagonal form 

* Supported in part by the King Gustaf VI Adolf's 70-Years 
Fund for Swedish Culture, Knut and Alice Wallenberg's Founda­
tion, The Swedish Natural Science Research Council, and in part 
by the Aeronautical Research Laboratory, Wright Air Develop­
ment Division of the Air Research and Development Command, 
U. S. Air Force, through its European Office, under a contract 
with Uppsala University. 

t On leave from the Chemistry Department, Teclmion-Israel 
Institute of Technology, Haifa, Israel. 

; This work was performed under a fellowship grant from the 
John Simon Guggenheim Foundation. Permanent adress: Chemis­
try Department, University of Colorado, Boulder, Colorado. 

1 R. Pauncz, J. de Heer, and P. O. Lowdin (to be published). 
2 P. O. Lowdin, J. Chern. Phys. 18,365 (1950); 19, 1579 (1951). 
3 P. O. L6wdin, J. Chern. Phys. 21, 496 (1953). 

by the unitary matrix 

U jl=n-i exp(2rijl/n) j, [=0, 1, ... , n-l. (2) 

(b) The eigenvalues are given by 

n-1 
dl= L Sp exp(2ripljn). (3) 

p~ 

(c) The elements of the matrix corresponding to any 
function of ~ are the following: 

1 n-1 
[F(~)J".=- L F(dl) exp[211'i(JL-p)ljn]. (4) 

n l~O 

In the case of the inverse, we wish to avoid the evalu­
ation of these sums, and rather give an explicit expres­
sion for its elements. We shall first treat the case when 
only S1 is retained and the other Si are put equal to 
zero, and afterwards return to the general problem. 

II. RESTRICTION TO NEAREST-NEIGHBOR 
OVERLAP 

In this case ~ can be written as 

where M1 is the topological matrix discussed extensively 
by Ruedenberg.4 

{ 
1 if P and q are neighbors 

M 1 ,pq= 0 
otherwise. 

The eigenvalues of ~ lie within the range 

1-2S1~dl:( 1+2S1 for n=2p, 

and 

(6) 

(7a) 

1-2S1 COSll'/ (21'+ 1):( dl:( 1+2S1 for n= 21'+ 1. (7b) 

The overlap matrix corresponding to any set of linearly 
independent orbitals can never have a zero or negative 
eigenvalue. Thus S1 must be smaller than 0.54 (note 
that for n=2p and S1=0.5, the inverse does not exist 
at all). We shall therefore restrict our treatment to 

4 K. Ruedenberg, J. Chern. Phys. (to be published); the authors 
are indebted to Dr. Ruedenberg for making preprints available 
to them. 
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this case. Physically, the breakdown for Sl>0.5 is 
understandable since with such high overlap it becomes 
utterly inconsistent to neglect all but nearest-neighbor 
interactions. 

A. Direct Method 

Divide A by Sl and introduce the notation 

N (a) = (a, 1,0,0, ... ,0,1)cyclic, 

with a= 1/Sl. Then 

A-I = aN-l (a), 

where a>2. The determinant and the cofactors of N(a) 
can be related to a special type of determinant, "con­
tinuant" 6 : 

a 1 
1 a 

1 a 1 
1 a 

, They fulfill the recursion relations 

P k =aPk- 1- P k--2, (9) 

with Pl=a and P2=a2-1. These determinants have 
been frequently used in connection with the simple 
MO-LCAO treatment of linear polyene chains, and it 
is well known that the Chebyshev polynomials of the 
second kind fulfill the same relations (9): 

(10) 

with x=2 cosl?-, So= 1, and Sl=X. Since in our case 
a> 2, we must use an imaginary argument, hence put 
iJ=it, or a=2 cOSht (see Appendix). The Pk(a) are 
then given by 

Pk(a) = sinh[ (k+ InJ/sinht= Sk(a). 

By the Cauchy expansion of the determinant / N(a) / 
according to its first row and column, we easily obtain 

/Nn(a)/ =Nn(a)=Pn -Pn- 2-2(-1)" 
= 2[coshnt- (-1)"], (11) 

Since both Nand N-l are cyclic and symmetric, it is 
sufficient to evaluate the cofactors pertaining to the 
elements of the first row of N. On denoting by Nik the 
determinant with the ith row and the kth column 
stricken out, we have 

N 00= P n-l(a) = sinh(n~)isinht, (12a) 

Nop.= (-l)P.[Pn-l_p.+ (-l)"Pp.-lJ 
= (-l)p.[sinh(n-JL)~+ (-1)" sinh.uG/sinh~. (12b) 

6 See, e.g., T. H. Goodwin and V. Vand, J. Chern. Soc. 1955, 
1683. 

By combining (12a) and (12b) with (11), we obtain 
the expression for the element of the inverse: 

sinh(n-JL)~+ (-1)" sinhJL~ 
[N-l(a)Jp.o= (-1)1' , (13) 

2 sinh~[coshn~- (-1)"J 

where JL ~ n12. The use of the cyclic and symmetric 
properties of the matrix yields all the remaining ele­
ments. 

By a simple manipulation we can write the foregoing 
result in the following form: 

[ 
sinhn~ ] } 

+ 1 coshJL~ . 
coshn~- (-1)" 

(14) 

If n becomes large and JL«nI2, the preceding expression 
yields the following asymptotic formula: 

Hence 

(16) 

with S 1 = 1/2 cosh~. This is a very simple expression, 
which shows that the elements of the inverse in the 
first column (row) decrease very rapidly. The asymp­
totic formula becomes worse as JL approaches n12; for 
JL = nl2 the exact expression is twice as great as the 
asymptotic one. Owing to the rapid decrease of the 
elements with increasing JL, the absolute error becomes 
practically negligible. 

B. Chebyshev Polynomials of the 
Topological Matrix 

In the second derivation, we shall use the Chebyshev 
polynomials of the first kind e" defined as 

en+l=xe,,-en-l, eo=2 and el=X, (17) 

Next let us introduce the following matrices which are 
cyclic of order n: 

(m)l = (0,1,0,. . ·0), (m)2= (0,0,1,. . ·0), 

hence with the general elements: 

[mp JkZ=<5k+P.I. 

Then we can easily prove that 

mpmq=mp+q. 

Since mo and m" are unit matrices, we also have 

mpm'l--p= 1, 

(18) 

(19) 

(20) 

(21) 

(22) 
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On the other hand 

so that the m are unitary matrices. 6 

Finally we define 

Mp=mp+DLp, Mn=Mo=21. (23) 

MI is the topological matrix, M2 the analogous matrix 
for next-nearest interaction, and so on. We now have 
the following relations between the M and m: 

M,=2m., if n=2v, 

MpMq= Mp+q+ Mp-q, 

Mn_p=M_p=DLp+mp=Mp. 

(24) 

(25) 

(26) 

The Mp are cyclic and symmetric matrices; they all 
commute and can be brought to diagonal form by the 
same unitary transformation. 

We can easily see that 

(27) 

since this relation holds for p=O and 1 and the Mp 
satisfy the same recursion formula as the ep : 

M o=21=eo(MI), MI=el(M1), 

MP+l=M1Mp-Mp-l. 

By using this result, we can obtain a number of 
characteristic equations, the first of which reads, for 
example, 

(28) 
or 

We must now discuss separately the case of even 
and odd n. 

(a) n=2v 

By using the definition (31), the characteristic 
equation (29) can be written 

(33) 

By adding and subtracting F,( -a) and dividing by 
[MI - (-a)], we have the following equation for the 
inverse: 

1 , 
= --- L Ekek( -a)e,_k(M1). 

F,( -a) k=O 

But eke -a) = (-1)kek(a) and F.( - a) = (-1)v-t-lF .(a) ; 
hence the final result reads 

1 • 
[M1+al]-I=-- L Ek( -1)y-kek(a)M._k 

F.(a) k=O 

1 • 
=-- L Ek( -1)kev-k(a)M k • (34) 

F.Ca) k-O 

(b) n=2v+l 

Now two characteristic equations will be used: 

M.+1=M., ev+l(M1)-e.(M1) =0, 

MV+2= Mv-I, e,+2(M1)-e,-1(M1) =0. 
(35) 

which is an equation of degree (n-1). The equation 
of the lowest degree which is not trivial reads The addition of the two equations yields, using (31), 

MV+l=Mv-l or ev+l(M1)-ev-l(M1)=0 (36) 

for n= 211, (29) It is convenient to introduce the shorthand notations 
MV+l=M. or e.+1(M1)-e.(M1)=0 

for n=2v+1. (30) 
G.=Fv+l+F ., G,=F.+1-F., (37) 

Introduce Fr(x) defined by 
5:>.= eV+l+e., ~,=e'+l-ep, (38) 

Fr(x) = er+1(X)-e,-1(X) ; (31) 
so that (35) and (36) read 

then we have the identity G,(MI)=O ~.(Ml)=O. (39) 

Fr(x)-Fr(a) r 
:E Ekek(a)er_k(X), 

Then, using (32), the following identity can be estab­
(32) lished: 

x-a k=O 

with EO= Er= t all other Ek= 1. The identity is easily 
verified if we multiply both sides by (x-a) and use 
the recursion formulas 

xer_k(X) = er+l-k(X)+er-l-k(X), 

aek(a) = ek+l(a)+ek-l(a). 

6 m,. t denotes the transpose of mpo 

G,(x)-G,(a) 
~ [eo(a)~,(x) + 5:>. (a) eo (x) ] 

x-a 
.-1 

+ L 5:>k(a)ev-k(X). (40) 
k~O 

In order to get the expression for the inverse, we proceed 
in the same way as in the case of an even number of 
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atoms: 
1 

1 
--{tCeo( -a)55.(M1) 

G.(-a) 

+5).( -a)eo(M1)J 
.-1 

+ L 5)k(-a)e._k(M 1)}. (41) 
k=O 

From (37) and (38) we obtain 

G.( - a) = (-l)·G.(a), 

5)k( -a)= (-1)k+155k(a); 

hence we obtain finally 

(42) 

(43) 

In order to compare the results obtained in Sec. ILA 
and n.B we write Eq. (13) in the form 

N(a)-1=[M1+aIJ-1 

• Sn_1_k(a)+(-1)nSk_1(a) 
= L (-l)k'l/k M k, (44) 

k=O Sn (a) - Sn_2(a)- 2 (-l)n 

where for n= 21' we must take '1/0= 'I/.=!, i.e., the 'l/k 
are identical with the €k introduced in Eq. (32); 
however, for n=2v+1, it is implied that 'l/o=! and all 
other 'l/k= 1. We can easily see that Eq. (44) is indeed 
obtained if we multiply numerator and denominator 
in (34) by S'_1(a) (for n=2v), and those in (43) by 
S.(a)-SI'-1(a) (n=2v+1). In both cases we also have 
to use the relation 

(45) 

C. Power Series Method 

The third derivation gives at once the asymptotic 
formula in a very useful form. This method can easily 
be modified to yield other powers of A, for example A-;. 

Let us take a power series expansion of an analytic 
function 

co 

fez) = L akzk; 
k=O 

the series is convergent if I z I < p. 

Put z=re iU and x=2 cosfJ, 

z=r{ (x/2)+i[1- (x2/4)J!}; 
then 

and 
co co 

fez) =! L akrkek(x)+i[l- (x2/4)J! L akrkSk_1(X). 
k=O k=1 

(47) 

Hence we obtain two very useful relationships: 

co 

L ak+1rkSk(X) = (l/r[l- (x2/4)J!} 
k=O 

where r < p, I x I < 2. We shall use the following power 
series expansion: 

f(z)=1/(1+z)=1-z+z2_ ... , ak=(-l)k, p=1. 

The real and imaginary parts are easily found: 

1 1+r(x/2) r[l- (x2/4)J! 
i.-----

l+z 1+rx+r2 

Hence 

and 

co 

L (-1)krkSk(x)=-l/(1+rx+r2), Ixl <2. (49b) 
k=O 

In order to relate Eq. (49a) to the present problem, put 

(1+r2)/r=a= 1/S1; 

r= (a/2)±[(a2/4)-lJ!= [1± (1-4S12)tJ/2S1' (50) 

The conditions S 1 <! and I r I ~ 1 allow only the minus 
sign. By a simple manipulation we can see that 

(1-r2)/r= (1-4S12)'/S1' 

Inserting (50) into Eq. (49a) we have 

Hence 

(52) 
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where 

r= [1- (1-4,S?)iJ/ZSl= 2SJ[1+ (1-4S1
2)lJ, 

(53) 

For large n it is sufficient to consider only the first 
nl2 terms in the expansion, which yields immediately 
the asymptotic form for the coefficient of Mk as 

with '1/o=! all other '1/k= 1. We must note, however, 
that this formula becomes worse as k approaches n12. 

Next we use the present method in order to derive 
the exact coefficients. By taking into account the 
property of the M", that 

t(55) 

where n is the order of the overlap matrix, we can 
convert the infinite sum (52) into a finite one: 

00 • 

(b) n=2v+l 

On the basis of (57) and (58), we have 

In order to compare the results of the present section 
with those obtained by the direct method, we put 
r= e-~. Then by virtue of Eq. (53) we readily establish 
that 

L CkMk = L b",Mk • 
k~O k~ 

(56) 2 cosh~=r+r-l 

On the basis of (55) we obtain the following relations 
between the c'" and b",: 

bk =Ck+Cn-k+Cn+k+C2n-k+"', k:r60, (57) in accordance with the earlier definition. Obviously 
and 

(58a) 

while for even n( = 2v) only 

b,=C,+Ca.+C5.+· ". (58b) 

Again we have to discuss the cases of even and odd n 
separately. 

(a) n=2v 

From Eqs. (52), (57), and (58), we obtain 

Sl (-r)v 
b., (60) 

(1-4S12)i l-rn 

Sl 
bk =(-I)k [rk + rn+k(I+rn + ... ) 

(1-4S1
Z)! 

+r"-"'(l+r"+'" )] 

(61) 

(65) 

Turning our attention first to the asymptotic formula 
(54), it can now be transformed to the following form: 

which dearly shows its equivalence with (15). Next it 
is easy to show that the results expressed in Eqs. 
(59)-(63) are equivalent to that contained in Eq. (13) 
if we multiply numerator and denominator of the former 
by [1-(-I)"r-"]. 

In. INVERSE OF A = 1 +SlMl +S2M2 

On returning to the general A of Eq. (1), we can 
obtain an explicit expression for its inverse using the 
results obtained for the restricted case of nearest 
neighbors only. For Eq. (27) shows that any M", can 
always be written as a polynomial in Ml of degree k. 
Hence we can easily carry out the following factoriza­
tion: . . 

A=L EkSkMk=constXII(akl+Ml), (67) 
k-O k~l 
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where in general the ak (no longer equal to Sk-1
) are 

complex numbers. We can easily generalize the deri­
vations given in Sec. ILA to the case when a is complex, 
and the form of the elements of the inverse remains 
unaltered. The only difference is that now the argument 
is a complex number (see Appendix). The factors 
(ak l+M1) commute, so that the inverse of 4. is found 
by multiplying together the inverses of the individual 
factors. 

We shall illustrate the method in the case of 

(68) 

for a system with an even number of atoms, n( = 2v). 
This matrix can be written in the factorized form 

4. = 1 +S IM1+S2 (MI2- 21) 
=S2(a11 + M 1) (a21 + M 2), (69) 

with 
(70) 

As mentioned previously, al and a2 are usually con­
jugate complex numbers: 

al=a2*=2 cos'l7=2(cosu coshv-i sinu sinhv), (71) 

where u and v are real. They can be determined on the 
basis of Eqs. (70) and (71): 

1 
cosu=--[(1+2S1+2S2)!- (1-2S1+2S2)'J, 

2 (S2)' 

1 
(72) 

coshv=--[ (1 +2S1+2S2)'+ (1- 2S1+2S2)']. 
2 (S2)' 

On multiplying together the inverses of the individual 
factors and performing the relevant summations, we 
obtain the following result: 

[I +SIM1+S2M2JOk-1 

= {( -1)k/8S2 (cosh2v- cos2u) (cosh2vv- cos2vu)} 
X {cotu[sinku cosh(2v-k)v 
+sin(2v-k)u coshkvJ+cothv[sinhkv 

Xcos(2v-k)u+sinh(2v-k)v coskuJ}. (73) 

The same method can be used if we wish to take into 
account third, fourth, and so on, neighbor interactions, 
but in view of the exponential decrease of the overlap 
integral with distance, it is hardly worthwhile to include 
many more terms. 

IV. INVERSE HALF-POWER OF 4. = 1 +SIMI 

In the discussion of a number of physical problems 
the inverse half-power of the overlap matrix plays an 
important part.2 

Since 4. is a cyclic and symmetric matrix, 4.-' must 
also have those properties. Thus it can be written in 

the following form: 

(74) 

The jth eigenvalue can be given in two alternative 
ways: 

p 

dr'=1/(1+2S1 cosja)b L 'Yk2 coskja, (75) 
k=O 

with a= (27r-)jn. We determine the 'Yk in expanding the 
lhs in terms of coslja and comparing the coefficients 
with those occuring in the rhs. For this expansion we 
use the following relation7 : 

1 00 

-(cosh~+cosja)-t=Ao+ L( -1)IAI2 coslja (76) 
V1 1 

with 
e-(l+m r(l+t) 

A 1=-- ---F(t, l+t; l+l, e-2~), (77) 
l! ret) 

where F is the hypergeometric series and 1/51 = a 
= 2 cosh~ as before. 

The result can be rewritten in the form 

<Xl • 

(1 +251 cosja)-l= L 201 coslja= L 'Yk2 coskja, (78) 
I~O k=O 

with 00= (SI)'A o/2 and 01= (_l)IA 1(51) •• 

The relation between the Oz and the 'Yk can be estab­
lished in the same way as in Sec. II.C, taking into 
account the fact that 

cos (rn±l)ja= coslja. (79) 

In spite of the fact that we cannot give such a simple 
expression as in the case of the inverse, the use of 
(74)-(78) is rather more advantageous than that of the 
formulas given in the earlier derivation.3 The coef­
ficients given in the present series expansion can be 
computed easily since it converges very fast for 5<!, 
and the so computed A 1 themselves decrease very 
rapidly with increasing 1. So for greater n there is even 
no need to use the periodicity relations (79) i the cor­
rections from the higher periods are completely neg­
ligible. For the sake of illustration we give the first 
few A z's for S = t : 
I: o 2 3 4 5 

A,:. 1.05465 0.28522 0.02848 0.01286 0.00151 0.00073 

678 

A,: 0.00009 0.00004 0.00000 •. 

7 W. Magnus and F. Oberhattinger, Formeln und Satze fur die 
speziellen Funktionen der matematischen Physik (Springer Verlag, 
Berlin, 1948), p. 214. 



                                                                                                                                    

MATRICES IN CYCLIC SYSTEMS 467 

APPENDIX 

In this Appendix we shall show that Chebyshev 
polynomials defined in terms of a complex argument 
satisfy the same basic equations as those commonly 
defined in terms of a real argument. 

Let 

and put 
z=2 COST} with T}=u+iv (Al) 

en(z) = 2 cosnT}, 

S,,(z) = sin[(n+ lh]/sinl1. 

(A2) 

(A3) 

As the relations 

sin(n+ lh+sin(n-lh= 2 cosT} sinnl1, (A4) 

cos(n+ 1)l1+cos(n-lh= 2 COST} cosnl1, (AS) 

still hold for the complex argument, it is seen that en(z) 
and S,,(z) fulfill the same recurrence relations as given 
in Eqs. (10) and (17) for real argument. 

In particular, if l1=i~, x=2 cosh~ and 

e,,(x) = 2 coshn~, 

S,,(x) = sinh[ (n+ 1)~]/sinh~. 

(A6) 

(A7) 
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. '!'- dfrect method of quantiz.ation, ap~licable to a !1iiven nonlinear hyperbolic partial differential equation, 
'~ mdicated. From such classIcal equations alone, wlthout a given Lagrangian or Hamiltonian, or a priori 
hnear r~ference system ~uch as ~ bare or incoming field, a quantized field is constructed, satisfying the 
conve~tlOnal commutat~on relatlOns. While mathematically quite heuristic in part, local products of 
quantiZ/!d fields do not mtervene, and there are grounds for the belief that the formulation is free from 
nontrivial divergences. 

1. INTRODUCTION 

THERE has been interest recently in the develop-
ment of purely nonlinear quantum field theories, 

i.e., theories which are formulated without the use of 
such physically somewhat dubious and mathematically 
linear notions as those of a "free" field or of an 
"elementary" particle.l Despite the promise of this 
work, the difficulties are such that there has sometimes 
been lacking a satisfying demonstration of the internal 
consistency of the formal structure on which the theory 
is based, or, on occasion, a reasonably clear-cut physical 
interpretation of the formalism. The purpose of the 
present work is to indicate a method of quantization 
that seems on the whole somewhat less subject to these 
defects. The main result is a new framework for co­
variant quantum field theory, which appears to be 
convergent, although mathematically quite heuristic. 
From any of a fairly wide class of given manifolds of 
"classical" wave functions, there is constructed an 
associated quantum field, as well as a possible means 
of determining theoretically vacuum expectation values 
of functions of field operators, and aspects of a formal 
elementary particle interpretation. In particular, the 
work provides some basis for a renewal of the traditional 
intuitive belief-which has been strongly tempered by 
the persistence of divergences during the past 30 years­
that for any simple covariant coupling of the conven­
tional elementary particles of relativistic quantum 
field theory, there should be a corresponding quantum 
field theory of their interaction; but at the same time 
casts further doubt on the rigorous relevance to such 
theories of the notion of elementary and/or physical 
(dressed) particle, as well as the possibility of expressing 
such a theory in terms of an a priori type of incoming 
field. 

* Research supported in part by the Air Force OSR and 
conducted in part at the University of Copenhagen while a-d NSF 
fellow. 

t Present address: Massachusetts Institute of Technology 
Cambridge, Massachusetts. ' 

1 See notably W. ~ei.senberg, Revs. Modern Phys. 29, 269 
(1957), and S. Deser, ~bid. 29, 417 (1950) (and other articles in 
addition !o t~e last-named, reporting t~e Chapel Hill Confere~ce 
on GraVltation); and especlally articles by Heisenberg and 
Yukawa, Proc. Internat!. Conf. High-Energy Nuclear Phys 
Geneva, 1958. ., 

Besides the perturbation-theoretic divergences of 
quantum field theory, and its use of an a priori linear 
reference space, there is another feature that is rather 
unsatisfactory from a foundational viewpoint. This is 
the dependence of the theory on a notion, the product 
of local fields [e.g., q,(x)if;(x)if;(x)* in conventional 
notation] which seems inevitably remote from any 
physical measurement. As is clear from a line of work 
originating with the well-known classical paper of 
Bohr and Rosenfeld, a suitably smoothed average 
fq,(x)f(x)d4x (f=a "test" function, corresponding to 
a probe into the field) is the most that one can hope 
to measure even in principle. However, no way has 
been found to express such a product as q,(x)if;(x)if;(x)*, 
or averages of it, in terms of such smoothed averages 
of individual fields; and quite apart from the di­
vergences which such products directly lead to, it is 
odd that a notion so lacking in direct physical meaning 
(as well as in rigorous mathematical significance, so 
that it rests purely on traditional formalism and 
metaphysics) should play the essential role in the 
construction of the field dynamics. The attempt to 
bypass this kind of difficulty by a purely axiomatic 
approach as in the work of Haag, Kallen and Wightman, 
Lehmann et al., and some others, has clarified the 
logical situation, but on the whole the results are still 
rather inconclusive, and certain of the axioms are 
rather strong from a physical standpoint. A more 
constructive (in the technical sense) line of attack is 
given by Segal,2 the essential presently relevant idea 
being the use not of the q,(x)if;(x)if;(x)* themselves, but 
only of integrals of the type H = .It-t'q, (x)if; (x)if; (x)*d3x, 
involving only commuting (and so more amenable) 
fields; and the use of these not as operators, but as 
generators of motions of the dynamical variables of 
the field. That is, roughly speaking, only the [H,X] 
need be finite for any field observable X, and not H 
itself, which leads to a mathematically quite well­
defined category of objects H materially broader than 
the class of self-adjoint operators in a Hilbert space. 
Although some definite results in quantum electro­
dynamics, of a rigorous character, can be obtained in 

2 1. E. Segal, Kg!. Danske Videnskab. Selskab Mat.-fys. Medd. 
31, No. 12, 1-39 (1959). 
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this way (d. footnote reference 3), this work has the 
important limitation that the physical vacuum is not 
constructed, and there are very substantial, if relatively 
well-understood difficulties in showing that H[ =H(t)] 
has the required properties for the rigorous existence 
of the time-ordered (product) integral exp[ifH(t)dt] 
that defines the transformation taking the in- into the 
out-field observables. It is hard to believe that a 
definitive foundational treatment of a system whose 
dynamics are conceptually as simple as those of 
quantum electrodynamics, say, must depend on the 
resolution of the intricate and special problems that 
arise here. 

At any rate, it seems reassuring to have a general 
scheme for setting up quantum field interactions in 
which the singular products of the type cf>(x)if;(x)if;(x)* 
play no role whatever. The formalism involves only 
quantities which are in principle capable of being 
related to direct physical measurement. It rests 
mathematically on the combination of certain simple if 
abstract ideas from the theory of differentiable mani­
folds with the intrinsic (representation-independent) 
theory of operator systems applied to field theory in,2 
and the development of mathematical analysis in 
function space. On the other hand, many of the relevant 
mathematical developments are presently available 
only in highly rudimentary form (e.g., it is not yet 
proved that the relevant classical partial differential 
equations have any nontrivial solutions-even of a 
generalized character-in the large), and we merely 
assume their eventual existence on the basis of plausi­
bility considerations. Also, the particle interpretation 
of the present scheme refers in the first instance 
essentially to the "primary" particles, and it seems 
doubtful whether a precise "empirical" particle inter­
pretation will exist with any generality, in view of the 
applicability of the scheme to both renormalizable and 
nonrenormalizable field equations, and to fields involv­
ing bound states and unstable particles. In particular, 
when a theory of the present sort is specialized, say, 
to quantum electrodynamics, it gives no a priori 
labeling of the states of the incoming field in terms of 
finite aggregates of "free physical" electrons and 
photons. Whether or not such labels can be rigorously 
established-as is a well-defined mathematical question 
according to the present framework, along with the 
question of the existence and character of bound states 
and unstable particles-it is difficult to make specific 
computations of real empirical effects without them or 
some approximate equivalent. Without these various 
developments there is no assurance either that the 
theory can be made mathematically irreproachable 
or can be accurately correlated with the crucial experi­
mental results pertinent to field theory. It is only from 
a theoretical physical point of view and relative to the 
present state of quantum field theory that the present 

3 I. E. Segal, Ann. Math. (to be published). 

work appears to represent a contribution of possible 
significance. There have after all been extremely few 
truly unambiguous theoretical developments in the 
subject since it was set up by Dirac, Heisenberg, and 
Pauli, despite the large number of fragmentary con­
tributions that have been made. It seems that for 
foundational purposes only a quite comprehensive 
attack employing conservative but global methods has 
much hope of ultimate success. As this has never really 
precisely been undertaken, there is no reason for undue 
pessimism, but the scope of such a development is 
necessarily such that it is unrealistic to begin highly 
explicit analytical computations until the fundamental 
design is well established. It is to the settlement of 
this design question-of what is actually a quantum 
field theory-that this article is intended to contribute. 

The present theory is related to linear quantum field 
theory (or the theory of noninteracting fields) in 
roughly the same way that the theory of differentiable 
manifolds is related to the theory of linear vector 
spaces-the interaction has its source in the nonlinear 
structure of the manifold representing the classical 
states of the system being quantized. The conventional 
type of theory of interacting fields (which may be 
called quasi-linear) is related to the present theory in 
somewhat the way that the theory of a Riemannian 
manifold as described by normal coordinates at a 
distinguished point is related to the intrinsic theory 
of the manifold. The vectors in the tangent space to 
the manifold at that point represent the bare particles 
of the theory, which would make the extrinsic theory 
convenient for giving a particle interpretation, if the 
apparent need for infinite mass and charge renormal­
ization did not make it impossible then to give ab in#io 
in the theory the precise relation between the manifold 
and the tangent space. The extrinsic theory is also 
disadvantageous from a theoretical point of view in 
its use of ad hoc assumptions as to the structure of the 
incoming field, which make the role of bound states 
and unstable particles in the theory highly elusive. 
For example, in the case of quantum electrodynamics 
it is conventionally assumed implicitly that the in­
coming field is describable by the Fock representation, 
with a renormalized tangent space as single-particle 
space; in general, such an assumption overdetermines 
the theoretical structure of a quantum field, and may 
well lead to internal inconsistencies. 

In its simplest form the nonintrinsic character of 
conventional theory is exemplified by the ad hoc 
separation of the total Hamiltonian into "free-field" 
and "interaction" parts, a separation that is required 
for the usual analytical treatment of scattering. The 
kinematics of the interacting field is derived from the 
free-field part and is linear, while the dynamics is 
superimposed on the kinematics through the statement 
of the interaction Hamiltonian or Lagrangian (or more 
operationally, of the S operator). In the present work, 
no Hamiltonian or Lagrangian (or S operator) needs 
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to be specified; the theory is built up entirely from the 
classical equations of motion. The distinction between 
the free-field and total Hamiltonians is seen to be 
essentially that between the linear motion in the 
tangent plane at a fixed point in a manifold under a 
group of transformations that is induced in the natural 
manner by the group action, and the nonlinear motion 
that is obtained by transferring, through the use, e.g., 
of normal coordinates, the given group to the tangent 
plane. In general relativity there is no distinguished 
invariant point of the manifold of solutions of the 
equations that is physically analogous to the point 
defined by vanishing fields in the case of elementary 
particle theory, and hence no covariant separation of 
the motion into two parts, but the theory may still be 
quantized by the intrinsic approach. 

From the viewpoint of general analytical dynamics, 
a theory of the present type is determined primarily 
by the specification of a differentiable manifold B 
representing the classical phase space of the system 
under consideration, together with a second-order 
Hermitian differential form D on B, and a correspond­
ing notion of multiplication by complex scalars in the 
tangent spaces of B. In classical mechanics the funda­
mental bilinear covariant is quite analogous to D, but 
complex scalars in the tangent spaces of phase space 
have apparently not been used. In the case of a field, 
where B is infinite-dimensional, D is better known in 
the form of the singular functions D(x,x') that arise 
as field commutators in the quantization of a linear 
equation. The tangent space at any point cp of B is 
parametrized by functions f,g,··· on space-time 
satisfying the first-order variations of the coupled 
field equations in the infinitesimal vicinity of cp (taking 
the case of a scalar field for simplicity), while D is 
determined by its imaginary part Di , which is by 
definition a rule that assigns to a point cp a bilinear 
form in the tangent vectors at cp, and is given by the 
equation 

D;(j,g; cp) = j jf(x)g(X')Dq,(x,X')d4xd4X'. 

In conventional theory only the singular functions of 
covariant free fields seem to have been used, and in 
this case D(x,x') depends only on x-x', but here the 
singular functions defined by similar Cauchy data for 
all first-order variations of the coupled field equations 
are relevant, and D(x,x') will have the usual type of 
dependence only in the special case cp=O (or other 
constant solution, if any, of the equation defining the 
manifold). This canonical construction for Di in the 
case of a manifold in function space defined by a non­
linear hyperbolic partial differential equation has been 
explored in certain cases and in a rather different form 
by Peierls.4 The fundamental symmetry group G of 
the theory may be any group of transformations on B 

4 R. E. Peierls, Proc. Roy. Soc. (London) A214, 143 (1952). 

that leaves D invariant, as does, e.g., the Lorentz 
group in the case of a manifold defined by a Lorentz­
invariant equation of the foregoing type. A complete 
set of primary quantum numbers of the usual type--of 
group-theoretic origin-will exist if, and only if, the 
induced action of G in the tangent space at cp=O is 
such that the linear operators in the tangent space 
that are left invariant commute with one another 
(or equivalently, the irreducible constituents of this 
representation are all distinct). When the generators 
of G are suitably labeled as "energy," "angular 
momentum," etc. (the Lorentz group is by no means 
the only one for which this is possible; d., e.g., Segal") 
the resulting physical theory, in particular the formal 
S operator, is in essence completely determined. 

The idea of constructing a purely nonlinear quantum 
field theory has been developed in recent years most 
extensively by Heisenberg (see footnote reference 1 
where further references are given), with whose stand­
point the theory described in the foregoing is in general 
harmony. While it thereby lends some support to 
Heisenberg'S idea that a purely nonlinear theory should 
be convergent, its specific form deviates in some 
important respects from that suggested by Heisenberg'S 
program, notably in the significant role played in it 
by singular functions associated with linear partial 
differential equations. It has been a cardinal principle 
of Heisenberg to avoid the use of such functions, with 
the aim of eliminating the divergences of conventional 
theory, which arise from the a priori meaningless 
character of their products. The latter are involved 
in computations based on perturbation theory, as well 
as, in essence, in the formulation of conventional 
dynamics. As indicated in the foregoing, in the present 
work no such products arise, so that the use of these 
singular functions introduces no divergences. But this 
does not in itself indicate that a fully satisfactory 
theory may be based on the Lorentz group and con­
ventional space-time, for divergences may well be 
introduced by the use of ad hoc labels for the states of 
the incoming field. Such desiderata as the observation 
of stable single-particle states of sharply-defined mass 
may well ultimately require the introduction of a 
fundamental length into the structure of B and/or lead 
to the replacement of the Lorentz group by another 
to which it is a partial approximation in the sense 
considered in footnote reference S. We may also note 
a rather obvious rough analogy between the role of 
the infinite-dimensional tangent spaces to nonlinear 
function manifolds in the present work and those of 
the finite-dimensional tangent spaces of the space-time 
manifold in general relativity. Partial parallels with 
important ideas of Feynman concerning the use of 
functional integration, of Dirac dealing with covariance 
questions, and of Wiener concerning nonlinear analysis, 
will also be evident to the knowledgeable reader. 

s 1. E. Segal, Report of Lille Conference on Quantum Fields 
(C.N.R.S., Paris, 1959), pp. 57-103. 
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Briefly, we show how a generalized canonical 
variable R(X) can be associated with an infinitesimal 
generator X of the group of classical contact trans­
formations on the given classical system. The con­
struction of these variables depends inessentially on 
the choice of a first-order differential form whose 
covariant differential gives Oi, and which is analogous 
to the form Lk pkdqk-Hdt employed in classical 
mechanics. In the case of a linear manifold, the R(X) 
associated with infinitesimal translations X in phase 
space give the conventional (Heisenberg) commuta­
tion relations, while the present generalized ones 
satisfy the rule 

[R(X),R(Y)]= -iR([X,Y])+O(X,Y), 

where [X,Y] denotes the usual bracket of two vector 
fields. When 0 vanishes (and only then), R gives a 
representation of the infinitesimal contact group, which 
is in fact in the finite-dimensional case the well-known 
one introduced by Koopman and studied by him and 
von Neumann, in connection with classical mechanics. 
It may also be noted that in not being concerned 
with an actual representation of the contact group, as 
well as in a number of other respects, the specialization 
of the present approach to the case of a finite­
dimensional linear manifold differs from the note­
worthy investigations of van Hove6 directed toward 
a basis for a rational correspondence between classical 
and quantum mechanical Hamiltonians. 

The avoidance of convergence difficulties depends in 
part on the elimination of any ad hoc Hilbert space in 
the foundation of the theory for the representation of 
the states of the incoming field, such a space being, 
however, convenient for correlation with experiment 
and also used, implicitly or explicitly, in most of the 
recent literature on quantum fields in a rigorous 
direction (d. the authors already cited). Rather, the 
incoming field becomes one of the objects whose 
structure the theory is to determine. The method is 
roughly to work with the system of all bounded func­
tions of finite sets of the canonical variables, together 
with their limits in the sense of uniform convergence, 
as in footnote reference 2; this gives a covariant class 
of observables that is representation-independent, in 
contrast to the set of bounded observables obtained 
by using functions of infinite sets of canonical variables 
and/or limits in the sense of so-called strong or weak 
convergence. States are defined through their expecta­
tion value functionals on the foregoing system, which 
is both more physical, and mathematically more 
effective than their a priori representation by vectors 
in a Hilbert space. Yet ultimately a Hilbert space can 
be constructed which represents the states of the 
incoming field, by the use of the physical vacuum 
expectation values, which are in turn connected with 

6 L. Van Hove, Acad. roy. Belg. Classe sci. Mem. Collection 
in 8° 29, No.6, 1-102 (1951). 

a process resembling integration over the classical 
manifold B (such integration is made fully rigorous 
in the case of infinite-dimensional linear manifolds 
by Segal,7a and a formal adaptation of this work to the 
relevant nonlinear manifolds will be indicated later). 

In more analytical terms, the main ideas of the 
present work may be indicated in their simplest form 
as follows. The manifold B of all real solutions of a 
given Lorentz-invariant hyperbolic nonlinear pa~tial 
differential equation in four-dimensionsl space-tIme 
carries a distinguished Hermitian structure. Quantiza­
tion involves in essence analysis over this manifold 
(in contrast to classical mechanics, which is concerned 
with the construction of the manifold and the action 
of various groups on it), i.e., the study of certain 
operators (in particular the values of the "qua~tum 
field") in spaces of functionals over the mamfold. 
Canonical variables may be attached to the vector 
fields on the manifold through the use of a differential 
form of first order related to the given Hermitian 
structure. The field itself arises from the projection of 
the variational derivative a/aj in function space onto 
the (sub-) manifold B; taking j as a delta function at 
a point yields formally the field at the point. The 
quantum-theoretical physical vacuum is represen~ed 
by the unit function on B, the vacuum state ?emg 
characterized by invariance under the group of Isom­
etries of B leaving invariant the vanishing field cp=O. 
The primary elementary particle species of the theory 
are given by the irreducibly invariant subspaces of 
the tangent space to B at the point cp=O (or other 
Lorentz-invariant point of B, if any), and formally the 
theory may be expressed entirely in terms of this 
tangent space, which corresponds essential~y to the 
most conventional procedure. The conventIOnal free 
fields (those given by the quantizations of the Klein­
Gordon, Maxwell, etc. equations in empty space) 
correspond precisely to the special case in which the 
manifold B is a complex Hilbert space and the Lorentz 
group action is unitary, the Hermitian structure being 
that given by the fundamental inner product, and the 
physical vacuum as characterized before being unique 
and the familiar one associated essentially with an 
isotropic normal distribution in Hilbert space. 

In considerable part, the foregoing description is 
valid only for Bose-Einstein fields. While it appears 
that the Fermi-Dirac fields can probably be treated in 
a rather analogous way, it will presumably be necessary 
to replace vector by spinor fields (over function 
manifolds), and the notion of integration by that 
treated in the linear case in footnote reference 7b , etc. 
In view of the substantial character of such modifica­
tions, the present paper is confined to the Bose-Einstein 
case. 

In Sec. 2, the nonrelativistic quantum mechanics of a 
finite number of degrees of freedom is extended to the 

7 (a) 1. E. Segal, Trans. Am. Math. Soc. 81, 106 (1956); (b) 1. E. 
Segal, Ann. Math. 63, 160 (1956). 
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case when space is not necessarily fiat; this involves 
in particular the reformulation of the conventional 
quantum conditions so as to be covariant under general 
point transformations in physical space. Section 3 
completes the preliminaries by showing how canonical 
variables and commutation rules may be set up in 
terms of phase, rather than physical, space, in a form 
covariant under contact transformations. The hydrogen 
atom and harmonic oscillator problems in the presence 
of nonvanishing curvature are briefly discussed in 
these sections. In Sec. 4, the earlier developments are 
combined with methods previously developed in con­
nection with certain aspects of infinite systems to 
obtain a quantization scheme for a class of infinite 
nonlinear systems, represented by the case of a classical 
system defined by a nonlinear hyperbolic partial 
differential equation. The concluding Sec. 5 discusses 
the present results in relation to some of the existing 
literature and possible further developments. 

2. FINITE SYSTEMS AND POINT 
TRANSFORMATIONS 

Consider a quantum-mechanical system whose posi­
tion is described by a point of an n-dimensional 
manifold M (and so is a system of 2n degrees of 
freedom). If as in conventional theory M is a linear 
manifold, one proceeds by introducing Hermitian 
operators PI,P2,'" ,pn and ql,q2,'" ,qn satisfying the 
Heisenberg commutation relations. If however, M is 
nonlinear, it is unclear a priori to what extent it is 
possible to proceed in a suitably parallel way. In the 
case of a sphere or torus, results can be obtained by 
making use of the simple natural parametrizations 
available for these manifolds. However, physically the 
availability of a suitable special parametrization 
appears as a rather technical restriction on M; intui­
tively it would appear possible to quantize a classical 
system whose position is represented by a point of a 
relatively arbitrary manifold. 

To develop an appropriate quantization method, 
we note that the canonical p's are naturally associated 
with vector fields on M, and the canonical Q's with 
position coordinates; the SchrOdinger representation 
for the linear case associates Pj with a/iax;, and Qj 
with the coordinate Xj. To handle the nonlinear case 
we merely allow the P's to be associated with arbitrary 
vector fields-i.e., linear forms in the iJ/iiJxj, with 
variable rather than constant coefficients (which are 
undefined in the absence of distinguished coordinates 
or related special features of M)-and the Q's with 

. arbitrary functions on M, and not merely linear func­
tions (which are likewise undefined on a general 
manifold). The commutation relations are virtually 
automatically generalized thereby; any commutator 
of canonical variables is required simply to be that 
associated with the commutator of the corresponding 
transformations on the functions over M. 

To make this approach mathematically effective, it 
is necessary to formulate the P's and Q's as well-defined 
operators in a Hilbert space. To set up an appropriate 
Hilbert space, take a measure m on the given manifold 
M that has a continuous nonvanishing density at 
every pointS; in general there will be no distinguished 
measure analogous to the Euclidean volume element 
used in conventional theory, but we proceed, tenta­
tively, with an arbitrary measure of the foregoing 
type; it will develope that actually the theory is 
independent of the choice of measure. 

The Hilbert space X is then defined as consisting of 
all square-integrable functions f on M (the values of f 
being complex numbers) with the inner product 

(j,g) = ff(x)g(x)*dm(x). 

Now if T is a general vector field on M, the associated 
canonical momentum peT) might be provisionally 
defined as the operator in X taking f into (li/i)Tf; 
this is appropriate from a formal algebraic viewpoint, 
but it gives rise to difficulties originating in the non­
Hermitian character of T as an operator in X. With 
the modified definition 

P(T)= (1i/2i) (T-T+), 

the fundamental commutation relations are unchanged, 
and peT) is now manifestly Hermitian. A simple 
computation shows that the foregoing definition works 
out concretely as 

P(T)= (h/i) (T+KT), 

where K'J' denotes the operation of multiplication by 
the function kT, which is defined by the equation 

2kT (x) = Tw+l(T), 

where m has the element wIIdxj (locally), and leT) is 
defined as Li (iJaj/iJxj) for T of the form Li aj(a/iJxJ). 

A straightforward computation that is here omitted 
yields the commutation relation 

[P(S),P(T)]= (h/i)P([S,T]). (1) 

The symbol [S,T] denotes the commutator of the two 
vector fields Sand T in the usual sense of the theory 
of manifolds. In the case of a linear manifold this 
vanishes for two infinitesimal translations, and (1) 
specializes merely to the commutativity of the con­
ventional linear momenta. For an infinitesimal trans-

3 For convenience, it is assumed, as seems no essential loss of 
generality from a physical standpoint, that the manifold M is 
infinitely differentiable, i.e., that it is possible near each point to 
choose local coordinates in such a manner that whenever a point 
is assigned two sets of coordinates, then near the point the one 
set may be expressed as infinitely differentiable functions of the 
other set. It is known (virtually as a matter of definition) that 
the existence of a measure with a nowhere vanishing continuous 
density function is mathematically equivalent to the orientability 
of M, which will be assumed in the present section. 
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lation and an infinitesimal rotation, however, (1) gives 
the conventional commutation relations between linear 
and angular momenta. 

The canonical Q's are defined more simply: if j is 
a general function on M, Q(f) is defined as the operator 
in H taking h into jh (i.e., the operation of multiplication 
by j). For real j, Q(j) is Hermitian, and there is no 
difficulty in verifying the additional commutation 
relations 

[P(T),Q(J)]= (h/i)Q(Tj), 

[Q(J),Q(g)]=O. 

(2) 

(3) 

The first of these relations includes the conventional 
commutation relations between an angular momentum 
and a coordinate, as well as the basic relations between 
a linear momentum and a coordinate given explicitly 
in the Heisenberg form. The second merely asserts the 
commutativity of all the Q's. 

The foregoing construction is essentially merely an 
adaptation of the Schrodinger representation to an 
arbitrary manifold, together with a reformulation that 
makes manifest the invariance of the scheme under 
arbitrary coordinate transformations. When M is 
three-dimensional Euclidean space, as in the conven­
tional theory of a single particle, the basic canonical 
variables are taken as the peT) with T restricted to 
be a first-order linear differential operator with constant 
coefficients, and as the correspondingly restricted Q(j) 
(i.e., j, a linear function on the space). Since such 
peT) and Q(f) however already suffice to give an 
irreducible set of operators on L 2 (M), the additional 
peT) and Q(J) defined earlier are already observables 
in the conventional scheme, so that the phenomeno­
logical structure of the theory-the observables, states, 
and notions defined in terms of these-is unaltered by 
the present reformulation. The broadened definitions 
of the peT) and Q(j) merely amount to a labelling of 
certain of the observables, which facilitates a general 
treatment of kinematics, in which transformations that 
do not have constant coefficients are treated on the 
same footing as those that do. 

Thus, as far as phenomenology and kinematics are 
concerned, the present formalism is quite equivalent 
to the conventional one of nonrelativistic quantum 
mechanics for the case of a system of finitely many 
particles i~ three-dimensional Euclidean space. Si~ce 
our ultimate aim is to treat systems whose dynamICs 
is implicit in their kinematics, that is all that is primarily 
relevant. Nevertheless, it is of interest to consider 
how the application of the correspondence principle 
to the determination of the quantum dynamics is 
affected. This may also serve to clarify and make more 
concrete the development just described. 

Conventionally, the quantum-theoretic Hamiltonian 
is derived from the classical one by a familiar, although 
generally somewhat ambiguous, process of substituting 
variables satisfying the Heisenberg relations for the 

commuting classical canonical variables. From the 
present standpoint, this means that a special frame 
(or class of frames) of reference is used in the manifold 
that will have no analog on a general manifold. The 
substitution method thus appears as less applicable 
in the case of a nonlinear manifold, but there is another 
effective method of implementing the correspondence 
principle, notably that of matching the invariance and 
other formal features of the classical Hamiltonian. 

Consider for example the problem of the hydrogen 
atom in an arbitrary Riemannian manifold. The 
relevant classical Hamiltonian is (or, strictly speaking, 
is defined as) the sum of the kinetic energy with the 
Coulomb potential (the latter being defined in general 
as proportional to the elementary. solution for the 
Laplace equation for the manifold). There is no need 
to describe the use of normal coordinates, etc., in 
obtaining a precise analog for the conventional classical 
kinetic energy, for the Laplacian gives immediately 
an operator that satisfies the key desiderata of general­
izing the kinetic energy in conventional nonrelativistic 
quantum mechanics and of being intrinsically defined 
in terms of the Riemannian geometry. It is clear that 
any finite number of particles with Coulomb inter­
actions may be similarly treated. 

This example may be not without some realistic 
relevance. The validity of three-dimensional Euclidean 
space as a model for macroscopic space at the non­
relativistic level is open to direct verification, but that 
the same model is valid in dealing with microscopic 
space (i.e., that in which it is theoretically appropriate 
to consider an electron as imbedded, if indeed such 
exists) is quite a different postulate, which can only 
be verified experimentally by indirect means, such as 
through its implications for atomic spectra (d., e.g., 
Schrodinger9). In particular, in the event that with 
increasing precision of measurement discrepancies from 
present theory are found in the spectrum of hydrogen, 
it might well be of interest to compare them with the 
first-order perturbations in the spectrum arising from 
a nonvanishing constant curvature, a problem which 
seems technically quite accessible. 

The correspondence principle as just applied does 
not have rigorous mathematical character, but is 
based partly on the exercise of judgement as to what is 
physically appropriate and mathematically natural. 
In involving possible ambiguity, the present form of 
the correspondence principle does not, however, differ 
from the conventional process, in which the assignment 
of the order of factors in a product of canonical operators 
is generally quite essentially nonunique. There have 
been many efforts toward the solution of this unique­
ness problem (see notably footnote reference 6, which 
is definitive in certain respects), but no completely 
satisfactory mathematical process has yet been pre­
sented. Thus the application of the correspondence 

9 E. Schrodinger, Naturwissenschaften 22, 518 (1934). 
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principle within the present formalism appears to be 
fundamentally not more difficult than its application 
by means of the conventional formalism, in the case of 
a linear manifold. Actually, in the following a unique 
method is given for passing from a covariant classical 
motion to a quantum-mechanical one in line with the 
present approach, but nontrivial applications are 
limited to systems of infinitely many degrees of 
freedom. 

It remains to consider the dependence of the fore­
going quantization scheme on the choice of a measure 
m on M. In case another measure m' is used, operators 
P' (T) and Q' (f) in another Hilbert space X' = L 2(M,m') 
are obtained. But the transformation 

V:f ---t f(dm/dm')! 

is unitary from X onto X', and it is straightforward 
to verify that 

VP(T)V-l=P(T), VQ(f)V-l=Q'(f). 

Thus the two systems of canonical variables are 
unitarily equivalent, and in fact the equivalence is 
implemented by the relatively trivial transformation V. 

The following paragraphs of this section concern 
questions of rigor, and some readers may prefer to 
omit them. 

In the foregoing work a certain loophole for irrelevant 
mathematical pathology has been left open through 
the use of the unbounded P's and Q's, which operate 
not on all of X, but on certain dense domains in X 
(this domain varying from operator to operator), and 
what is more serious, cannot be unambiguously 
multiplied and added together freely. The well-known 
device of Weyl for eliminating pathological canonical 
systems and making in a natural fashion the P's and 
Q's mathematically more clear-cut in the case of a 
linear manifold can however be adapted to general 
manifolds. It consists in the replacement of the con­
sideration of the P's and Q's in the foundations of the 
theory by the consideration of the one-parameter 
unitary groups they generate. Actually it is convenient 
to modify this device and consider in place of the one­
parameter groups generated by the Q's the smooth 
bounded functions of them, for this merely amounts 
to using only those Q(j) for which f is such a function. 
In this way one is led to make the following definition 
reminiscent of that for a representation of a group of 
transformations given by G. W. Mackey. 

Definition 1. A generalized Heisenberg canonical system 
over a finite-dimensional infinitely differentiable mani­
fold M is a pair of maps [U,Q], which are respectively 
from the group G of all nonsingular infinitely differenti­
able transformations in M and the class (Jt of all real 
bounded infinitely differentiable functions on M that 
vanish at infinity, to the bounded operators in a 
Hilbert space 3(, such that: 

(1) U is a unitary representation of G: U(gg') 
=U(g)U(g'), U(e)=I (e=unit of G, I=identity 
operator on x), U(g)-l= U(g)*; and is continuous on 
finite-dimensional subgroups of G. 

(2) Q is an isomorphism: Q(f+f')=Q(f)+Q(f'), 
Q(lf)=IQ(f), Q(ff')=Q(f)Q(f'), and Q(f)~O if f~O. 

(3) U(g)Q(f) U (g)-l = Q(fg) , where fg(x)=J(g-l(X» 
(this essentially gives in finite form the commutation 
relations between a P and a Q). 

(4) The Q(j) generate a maximal commuting sub­
system of the total system of operators generated by 
the U(g) and Q(f). 

In the case when M is a finite-dimensional Euclidean 
space, the only such system, within physical equivalence 
(or observables and states) is that in which X=L2 (M), 
U(g)h(x)=h[g-l(X)], and Q(f)h=fh. But if M is not 
a simply connected manifold, there will be unitarily 
inequivalent Heisenberg systems.1° Nevertheless there 
is always a fully covariant way to specify the repre­
sentation that is relevant here, i.e., to make Definition 2. 

Definition 2. A generalized Schrodinger canonical 
system over a finite-dimensional infinitely differentiable 
orientable manifold M is the pair of maps [U,Q] from 
G and (Jt described earlier, to operators on L 2(M,m), 
where m is an arbitrary measure on M with infinitely 
differentiable nonvanishing density function, given by 
the equations 

U (a)h(x) = h(a-1(x» (dma/ dm)!, 

Q(j)h=fh. 

Here a is an arbitrary element in G, and ma denotes the 
transform of m under the transformation of measures 
induced by the transformation a on M. 

As noted earlier, all the Schrodinger systems are 
unitarily equivalent, and no essential ambiguity will 

10 The number of inequivalent such is an invariant of M closely 
related to its one-dimensional cohomology in the following way: 
if w is any closed first-order differential form on M, then the 
equations P'(X)=P(X)+w(X), Q'(j)=Q(f), define a Heisenberg 
system [P',Q'] (in infinitesimal terms) which will be equivalent 
to the system [P,Q] if w is exact, but not generally otherwise. 
Specifically, there is equivalence if, and only if, w is logarithmically 
exact, in the sense that w=dF/F for some function F on M. It 
follows from a study of the logarithmically exact forms (d. a 
forthcoming paper by R. S. Palais; similar but less complete and 
unpublished results are due to E. Dyer and R. Swan) that on a 
manifold with first Betti number r, there is an r-parameter 
family of inequivalent Heisenberg systems. 

Mathematically it is interesting to weaken statement (4) by 
requiring only (4'), ergodicity: no nontrivial function of the P's 
and Q's commutes with all the P's and Q's. The analog of the 
Schrodinger representation with square-integrable functions 
replaced by square-integrable tensor fields is an example of a 
system satisfying (4') but not (4). The foregoing connection with 
closed differential forms and cohomology can be extended, but 
some of the quantum-mechanical invariants of M obtained in 
the indicated fashion may be new, depending in part on the 
extent to which the tensor field examples exhaust the possibilities, 
within unitary equivalence and the intervention of a closed form. 
This is a point having a certain differential-geometric interest, 
and conceivably there is a physical role for the tensor, etc. 
representations in other physical connections, but in the present 
paper only the "scalar" Heisenberg representations given by 
Definition 1 are used. 
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result if anyone of these systems is referred to as the 
Schrodinger system. Thus we may summarize the 
foregoing section as: 

Principle I. There exists a unique and mathematically 
precise scheme for setting up quantization conditions on 
an arbitrary orientable finite-dimensional manifold M; 
this extends the conventional scheme for the case of three­
dimensional Euclidean space, and is covariant under 
arbitrary transformations on the manifold. In essence, 
the generalized canonical variables are represented by 
Hermitian first-order linear differential operators on M, 
relative to an arbitrary measure on M. 

3. FINITE SYSTEMS AND CONTACT 
TRANSFORMATIONS 

Let us now consider the method of the preceding 
section in relation to the problem of the quantization 
of an infinite nonlinear system. At a nonrelativistic 
level the problem is that of developing a parallel to 
Dirac's extension to a radiation field of Heisenberg's 
original quantization procedure. A field whose state at 
a particular time is represented classically by a solution 
of a certain nonlinear partial differential equation, 
rather than by a linear equation as in the case treated 
by Dirac, has its nonlinear canonical Q's associated 
with functionals on the manifold M of all classical such 
solutions of the equation, while the canonical nonlinear 
P's are associated with vector fields on M, as indicated 
in Sec. 2. If the field equation is first order and hyper­
bolic in the weak sense that the values of the solutions 
at a particular time t= to determine the solutions 
throughout space-time, and if the initial values form 
a linear vector space (assumptions which in essence 
are frequently made), this set of initial values may be 
taken as the manifold M, and the nonlinearity enters 
primarily in the nonlinear action of displacement in 
time on M. The adaptation of Sec. 2 to this case 
requires a notion of integral in M, and the development 
of its transformation properties under nonlinear trans­
formations of M, of the type presented by Gross,ll as well 
as, for a rigorous treatment of certain divergent cases, 
an as yet unavailable combination of the transformation 
theory of footnote reference 11 with the representation­
free approach of footnote reference 2. Basically how­
ever-in particular as regards the formulation of the 
quantized field itself-the development of this non­
relativistic theory is closely related to that of the co­
variant theory that is our central concern, and to which 
we shall therefore restrict our further consideration. 

The quantization of a nonlinear covariant system 
involves new formal elements roughly analogous to 
those involved in the Heisenberg-Pauli extension of 
the Dirac theory to the relativistic case. The circum­
stance that there is no separation between the P's and 

11 L. Gross, Trans. Am. Math. Soc. 94, 404 (1960). 

Q's that is invariant under the entire Lorentz group 
in the case of a conventional field shows that there is 
no fully Lorentz-invariant manifold of classical wave 
functions in the covariant case that plays the same role 
as the manifold M in Sec. 2. Rather, the manifold of 
classical wave functions that is usually given in the 
field-theoretic case by a partial differential equation 
is analogous to the phase space in the case of a classical 
system of finitely many degrees of freedom. An 
element of such a manifold (e.g., a particular solution 
of Maxwell's equations, as an element of the manifold 
of all solutions) completely describes the "classical" 
state of the system. A point of the manifold M in Sec. 
2, however, merely determined the location in physical 
space of the classical system; to specify its state 
completely requires in addition the momentum vector 
at the point. The collection of all such complete 
specifications forms a manifold B of twice the dimension 
ofM. 

Thus in the relativistic field-theoretic case, one is 
given an analog to the classical phase space B, but is 
not given any analog for the space M describing the 
spatial location of the system, nor is there any explicitly 
relativistic way to define such an analog. Therefore, 
in passing from the treatment of Sec. 2 to the case of 
an infinite covariant physical system it is natural to 
attempt to interpolate a treatment of a finite system 
directly in terms of its phase space, in such a manner 
that the P's and Q's are dealt with on an equal footing. 
The point of this interpolation is primarily theoretical; 
there are in fact no nontrivial and realistic Lorentz­
invariant systems of finitely many degrees of freedom. 
But it is useful to be able to develop the formalism 
free from the analytical complications that are present 
in the case of infinite systems, and in fact the results 
for the finite case will be needed in dealing with the 
infinite case. 

A classical phase space such as B is not at all an 
arbitrary space, but has a special structure. In the 
case of a conventional classical system of n degrees of 
freedom, a point of B is often specified by a vector 
(ql,' .. ,qn, Pi,' .. ,Pn) whose first n components give 
the spatial location of the system, and whose last n 
give its momenta. When the spatial location is de­
scribed by a point of a nonlinear manifold M, such a 
coordination is generally only locally valid. In intrinsic 
terms, a point of the phase space B is a pair consisting 
of a point of M together with a vector in M at the 
point, the components of the latter being the various 
momenta. (Cf., e.g., Veblen and Whitehead. 12

) The 
conventional (ql,'" ,qn) give a nonintrinsic way of 
specifying the point of M, while the (h'" ,pn) give a 
similar specification for the vector. The key property 
of B from the standpoint of dynamical theory is its 
covariant association with a distinguished differential 
form of second degree, say n, which is defined by the 

12 O. Veblen and J. H. C. Whitehead, Foundations of Di./Jerential 
Geometry (Cambridge University Press, New York, 1932). 
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equation 
n= Li=ln dpidqi, 

in the vicinity of a point (p,q) of B, where (ql,'" ,qn) 
are local coordinates in M near q, and (pl," . ,pn) are 
the corresponding coordinates for the vectors at q. 
This form is nondegenerate and determines a nowhere 
vanishing positive element of measure dm=nn 
= ITi dpidqi. There is no difficulty in verifying that n, 
and hence also m, are independent of the local co­
ordinates, and are globally defined on B. A dynamical 
or "contact" transformation is then defined as a point 
transformation on B that leaves invariant the form n. 

To quantize the system, starting from the phase 
space B, observe first that for any vector field X on M 
there is, as is well known (d. Whittaker13

) a cor­
responding contact transformation p(X) on B. It 
suffices to defined p(X) locally, in terms of the local 
description of X in a particular coordinate system. 
Writing X = Li a(djdqi), then 

p(X)=X -l:i.i p,[(da.jdqj)(djdPj)] 

(this is the contact transformation corresponding to 
the Hamiltonian H = l:i Piai). Next, for any function 
] on M, there is a corresponding infinitesimal contact 
transformation q(J) onB: q(J)= - L;j [(d]jdqj) (djdPj)] 
(this corresponds to the Hamiltonian]). 

Next observe that the p(X) and q(J) satisfy almost 
the same algebraic relations as the P(X) and Q(J). 
Specifically, it is straightforward to compute 

[p(X),p(X')]= p([X,X']), 

[p(X),q(J)] = q (X]) , 

[q(J),q(J')]=O. 

There is, however, a certain difference, which is quite 
fundamental, namely, that q(J) = 0 if ] is constant; in 
particular p(X) and q(J) commute in the linear case 
when X is an infinitesimal translation and] a linear 
function. Thus the p(X) and q(J) do not directly give 
quite a canonical system; but there is an invariant 
construction employing them that gives such a system. 

If T is an infinitesimal contact transformation, it 
defines a Hermitian operator in L 2(B,m), where the 
measure m is determined by the fundamental form 
dm= ITi dpidqi, by its direct action: h ~ -iTh, for any 
function h that is square-integrable qver B. Now the 
form n is an exact differential: n= dw, where w is the 
differential form of first order L;, pidqi which is in­
variant on M. Associated invariantly with T and w is 
the function on B, weT), and the definition 

R(T)= -iT+w(T) 

then gives a Hermitian operator in L2(B,m). It follows 
from the formula in the theory of differentiable mani­
folds for the derivative of a one-form (or alternatively 

13 E. T. Whittaker, Analytical Dynamics (Cambridge University 
Press, New York, 1959). 

by direct computation) that the R(T) satisfy the 
commutation relations 

[R(T),R(T')]= -iR([T,T'])+n(T,T'). 

Now when T and T' are taken as the p(X) and q(J), 
one has, by direct computation 

n[p (X),q(J)]= X], 

n[p(X),p(X')]=w([X,X']), 

n[q(J),q(J")]=O. 

In particular, substituting in the foregoing commutation 
relations and defining P(X)=R[P(X)] and Q(J) 
=R[q(J)], there results 

[P(X),P(X')]=P([X,X']), 

[P(X),Q(J)]=Q(X]), 

[Q(J),Q(J')J=O. 

Here P(X) and Q(J) vanish if X vanishes or] is con­
stant, respectively, but they have the proper 
commutation relations in the case of an infinitesimal 
coordinate and a linear function. The last set of 
equations are in fact identical with the commutation 
relations given at the beginning of the preceding 
section. 

Now the foregoing commutation relations not only 
extend the conventional ones of the nonrelativistic 
quantum mechanics of finite systems, but are closely 
analogous to those used in footnote reference 2 for the 
quantization of general Bose-Einstein fields. In view 
of this, and since we seek a formulation in which the 
p's and q's are treated symmetrically, we make 
defini tion 3. 

Definition 3. A SchrOdinger canonical system over a 
phase space B with exact fundamental differential 
form n is a mapping X ~ R(X) from the infinitesimal 
contact transformations on B to the self-adjoint 
operators in the space L2(B,nn) of square-integrable 
functions over B with respect to the canonical measure 
on B, of the form R(X)=X+w(X), where w is a first­
order differential form such that dw=n. 

In case B is simply connected, any two w's differ by 
the differential of a function, multiplication by the 
complex exponential of which gives a unitary trans­
formation taking the one Schrodinger system into the 
other. Assuming now, that B is simply connected, a 
rather slight restriction as far as our purposes go, we 
may speak of the Schrodinger system on B with no 
essential ambiguity, as in Sec. 2. 

Any contact transformation on B, say T, gives rise 
to a unique transformation of the canonical variables 
defined by the property of taking R(X) into R(XT), 
for an arbitrary vector field X, where XT denotes the 
vector field into which X is transformed by T. In this 
way it is possible to pass uniquely from a given classical 
kinematics (or even dynamics) to corresponding 
quantum-mechanical ones. The foregoing would appear 
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to be the simplest quantization scheme that is invariant 
under all classical contact transformations, although, 
as discussed below, it is open to serious question 
whether all the R(X) are truly obse~able, or equiva­
lently whether some additional selection principle does 
not operate, as well as to what extent the dynamics 
just defined agrees with the conventional substitution 
rule. 

To see the connection with conventional theory, 
consider the case when B is the phase space for three­
dimensional Euclidean space M. At first glance it 
would appear that the Hilbert space L 2 (B) is far too 
large, and that the present theory must be materially 
different from the conventional one. The point is 
however that the elements of L 2(B) serve only to set 
up our observable algebra, and have primarily analyti­
cal rather than physical significance; our states are 
linear forms on our observable algebra, and only 
coincidentally expressible in terms of vectors in 
specific Hilbert spaces. The R(X) with X restricted 
to be the extension to B of a Euclidean motion in M, 
or the infinitesimal contact transformation whose 
Hamiltonian is a linear function on M, or a sum of 
two such vector fields, satisfy the very same commuta­
tion relations as the conventional linear and angular 
momenta, and position observables. It follows there­
fore from the Stone-von Neumann theorem on the 
uniqueness of the Schrodinger operators,14 or actually 
by a fairly simple direct reduction in this case, that 
these R(X) are identical with the conventional 
Schrodinger operators, not within unitary equivalence, 
but what is physically just as effective, within unitary 
equivalence and multiplicity. There is no difficulty in 
verifying that the kinematics defined above for the 
R(X) is in corresponding identity with the conventional 
kinematics. The dynamics is also in agreement in' the 
two formulations, for the case when the Hamiltonian 
is at most quadratic in the canonical variables; but 
for a general Hamiltonian the two formulations are 
incomparable a priori because the class of R(X) 
singled out in connection with conventional theory is 
not invariant under a general contact transformation. 
Thus for a free particle or harmonic oscillator the two 
theories are in precise agreement (d. SegaP5); but for, 
say, the hydrogen atom problem, the relationship is 
obscure. This is not of special concern to us because 
our primary interest is in the covariant case, and we 
could hardly expect to solve in an incidental way the 
much considered problem of formulating a unique way 
of passing from a classical nonrelativistic Hamiltonian 
to a quantum-mechanical one, which is invariant 
under contact transformations, etc. It would never­
theless be of significant independent interest to 
determine in the hydrogen atom case the precise 
connection between the theories, which may possibly 

14 J. von Neumann, Math. Ann. 104, 570 (1931). 
15 L E. Segal, Can. J. Math. (to be published). 

be in agreement within terms of order h2• [An eigen­
state of the present motion in L 2(B) gives rise to a 
linear form on the subsystem generated by the special 
class of R(X) designated before, which in turn gives 
a linear form on the conventional system of operators 
on L2(M); this should be a pure state within O(h2) 
which has a wave function agreeing with a conventional 
hydrogen atom wave function within O(h2).] 

A natural and general way to pick out the relevant 
special class of R(X) seems to be to make use of a 
Riemannian structure in B, which it will inherit from 
that of M, in case B originates from an M. When Mis 
Riemannian and ql,' .. ,qn are normal coordinates at a 
point, while PI,'" ,Pn are corresponding vector co­
ordinates, the symmetric quadratic form (!) Lk (dpk2 

+dqk2) defines a Riemannian structure in B. An in­
finitesimal complex structure can be introduced in B 
by defining multiplication by i to act in each tangent 
space of B by taking the dp's into the corresponding 
dq's and the dq's into the corresponding -dp's; this 
structure is evidently intrinsic, and in combination 
with the form n, gives a positive definite Hermitian 
structure to each tangent space of B. When B arises 
from an M the infinitesimal complex structure will 
be integrable only when M has vanishing curvature, 
according to a result obtained by K. Kodaira (written 
communication via N. Steenrod) and also by A. 
Frolich and A. Nijenhuis (oral communication). The 
case of a given Hermitian manifold B not necessarily 
originating from an M, is, however, more relevant to 
relativistic field-theoretic situations. In any event a 
transformation on a Hermitian manifold B may be 
called isometric in case it preserves the Hermitian 
inner product in each tangent space to the manifold; 
and the observables R(X) may, in the case when B is 
endowed with a Hermitian structure having n as the 
imaginary part of the inner product, be restricted to 
those for which X is infinitesimally isometric. This is 
natural from a mathematical viewpoint, and it will be 
seen later that it gives the conventional theory in the 
case of covariant free fields, as well as, as noted earlier, 
in the case of elementary quantum mechanics. It 
should perhaps be emphasized that, in any case, the 
presence of the additional R(X) does not in any way 
alter the physical conclusions concerning the sub­
system generated by some restricted class of R(X)-the 
stationary states and expectation values, transformation 
properties, etc., of the subsystem are unaffected by 
treating it as a subsystem rather than as a full system 
in itself. 

A theoretically less severe limitation on the R(X) to 
be used in forming the subsystem of interest, although 
for many manifolds apparently an equivalent limitation, 
is the use only of those for which X is holomorphic, 
i.e., commutes with the operation defining multiplica­
tion by i in each tangent space. In a formal way one 
may in fact describe the relevant states explicitly, as 
represented by the holomorphic functions on B. 
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Example. Let B be a complex n-dimensional space, 
with coordinates ZJ, Z2, ••• , Zn, and fundamental Hermi­
tian form Lk dzkdzk*. The isometry group is generated 
by the translations together with the homogeneous 
unitary transformations. Writing Zk= Pk+iqk, where Pk 
and qk are real, and setting Pk=R(ajapk) and Qk 
=R(ajaqk), gives the conventional commutation rela­
tions. Choosing w= (!) Lk (zkdzk*-Zk*dzk) gives speci­
fically Pk=[(lji)(aj8pk)]+qk and Qk=[(lji)(8j8qk)] 
-Pk .. These look rather different from the conventional 
quantum-mechanical variables, but by the uniqueness 
result cited, must be the same, apart from a unitary 
transformation, and the introduction of a multiplicity 
(visible in the circumstance that B has twice the 
dimensionality of the real manifold on which the 
Schrodinger representation is based). It is actually not 
difficult in this case to exhibit specifically, without the 
use of the uniqueness result, the decomposition of the 
present operators in the form 

Pk=PkoXI; Qk=QkoXI, 

where (PkO,QkO) are the conventional Schrodinger 
operators and I is the identity operator in a certain 
Hilbert space. 

For any unitary transformation U on B, there will 
be a corresponding unitary transformation r(U) on 
L2(B), transforming the canonical P's and Q's into 
corresponding linear combinations of themselves, by 
virtue of the fact that transformation of a translation 
by a unitary is another translation. More generally 
this is true of any linear contact transformation 
(i.e., so-called "symplectic" transformation). Of par­
ticular interest is the case when U ( = U t) is mul tiplica­
tion by eit, Zk ----> eitzk ; r (U t) is then a one-parameter 
group of operators whose generator is the conventional 
harmonic oscillator (isotropic) Hamiltonian. Its ground 
state, as an expectation value linear functional on the 
algebra generated by the R(X) with X an infinitesimal 
isometry is invariant under the r(U) with U unitary. 

Now let B be any simple connected Hermitian 
manifold with associated closed form Q, for short 
phase manifold. There is then a corresponding theory. 
Because there is in general no distinction analogous to 
that between the translations and homogeneous 
transformations, all the various momenta, and even 
the position coordinates, are treated on the same 
footing. Transformation properties of these canonical 
variables under the subgroup Go of isometries leaving 
fixed a point CPo of B are quite analogous to those in the 
linear case, where CPo is the origin and Go the unitary 
group. 

To formulate the relevant intrinsic nonlinear analog 
to the ground state of the harmonic oscillator, fix a 
point CPo, and consider the connection between the 
tangent plane T <1>0 at CPo and the manifold B. The 
"exponential" map introduced in differential geometry 
by Whitehead, taking a vector I of T <1>0 into a cor-

responding point exp(l) in B, lying an appropriate 
distance from cpo on the geodesic from CPo in the direction 
of I, gives a local linear parametrization of B, which will 
have, in general, certain singularities in the large. 
These singularities will, however, form only sets of 
measure zero in T <1>0 and in B, in the case of many 
manifolds, particularly those whose deviation from 
linearity arises from the non triviality of the funda­
mental Hermitian form, rather than from the non­
triviality of the connectivity properties of the manifold 
B, as is formally the case of basic interest here. (The 
manifold of solutions of a nonlinear hyperbolic equation 
is from the quite heuristic standpoint usually employed 
in theoretical physics topologically flat, as it is generally 
implicitly assumed that the admissible Cauchy data 
at a particular time do not need to satisfy any special 
nonlinear conditions, and determine the solution 
throughout space-time.) At any rate, for a fairly 
extensive and interesting class of manifolds M, the 
map 1----> expl will give rise to a well-defined mapping 
of sets into sets, if sets of measure zero are neglected, 
and thereby to a linear and multiplicative correspond­
ence between the measurable functions on T <1>0 and 
those on B. 

Any unitary transformation U on T <1>0 will give a 
corresponding transformation ro(U) on L 2(T <1>0), and 
by virtue of the foregoing correspondence, a trans­
formation r(U) of L2(B,Qn). Choosing U to be multi­
plication by eit (t real) gives then a one-parameter 
group on L2(B,Qn), whose generator may be designated 
as the Hamiltonian for the generalized harmonic 
oscillator on B at CPo. This will not necessarily be self­
adjoint relative to the given inner product, but it will 
have real, and in fact integral eigenvalues. It may 
also reasonably be conjectured that in the cases of 
interest, and in particular when B is obtainable by 
continuous deformation of a linear manifold, the 
spectrum will be bounded from below, and the ground 
state will be unique, as an expectation value functional 
on the functions of the R(X) for isometric X. 

The point of this construction is that it picks out in 
a natural and well-defined way a particular state that 
is invariant under the group Go of isometries leaving 
invariant the point cpo. This will be useful in getting at 
the physical vacuum in the case of fields, where such 
invariance presumably characterizes the physical 
vacuum, although in the finite-dimensional case there 
will generally be other invariant states under Go. 

Now when B is a complex unitary space, the cor­
responding physical situation is considered to be free 
of interaction, and in a certain sense this is evidently 
true of the situation for a general Hermitian manifold 
B. But from the standpoint of an observer who utilizes 
as a reference system the tangent plane to B at a 
particular point cpo-i.e., the reference system appro­
priate for the examination of small displacements from 
a particular classical state-interaction is present. In 
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particular the ground state of B and the ground state 
of the linear system associated with the tangent plane 
are not simple transforms of one another, nor does 
the isometry group leaving l/>o invariant transform B 
in the same way as does the transform via the ex­
ponential map of the linear action of the isometry 
group on the tangent plane at l/>o. 

The preceding line of development may be summar­
ized as follows. 

Principle II. Let there be given in a simply connected 
manifold B of states of a physical system a distinguished 
locally exact Hermitian differential form. There is then 
a unique and mathematically precise scheme for setting 
up quantization conditions, which extends elementary 
quantum mechanics as well as the conventional quantiza­
tion theory for relativistic free fields. The relevant co­
variance group is that of all transformations on the 
manifold leaving invariant the fundamental form 
(isometries, that is) as well as a distinguished point of B. 
The canonical variables R(X) are associated with in­
finitesimal isometries, and satisfy the commutation 
relations (4); they are Hermitian first-order linear 
differential operators on B, relative to the canonical 
measure determined by Q. There exists with significant 
generality. a ground state on B analogous to the lowest 
eigenstate of a harmonic oscillator in elementary quantum 
mechanics. 

The situation as regards field quantization needs to 
be elaborated somewhat; this will be done in the next 
section, where the foregoing principle will be applied 
to the quantization of a nonlinear hyperbolic partial 
differential equation. 

4. INFINITE SYSTEMS 

This section extends the preceding one to the case 
of infinite systems, and indicates how this extension 
may be used to quantize a given nonlinear hyperbolic 
partial differential equation. 

A. Formal Differential Geometry of Nonlinear 
Hyperbolic Equations 

For simplicity and concreteness we treat here 
primarily the classical (unquantized) system M defined 
by the equation 

Dl/>=m2l/>+p(l/», p a polynomial vanishing at 0; (5) 

the extension to rather more general cases appears to 
involve no great difficulties. M may be regarded as an 
infinite-dimensional manifold that is imbedded in the 
manifold (say S) of all scalar functions on space-time. 
Consequently, at any point l/> of M there will be a 
tangent plane T", 4efined by the equation 

(6) 

For arbitary given l/> in S, this equation defines a linear 
manifold in S, and in fact M may be considered as an 

integral manifold of this distribution of linear manifolds, 
that passing through the point l/>= O. (It is worth noting 
that the satisfaction of the relevant integrability 
conditions by this distribution of linear manifolds is 
purely a matter of linear analysis, and so on a much 
more accessible level than the questions of classical 
nonlinear analysis involved in the structure of M as 
first defined.) At this generally substantially unique 
Lorentz-invariant point of M, the tangent plane is 
defined by the so-called "free-field" equation 

(7) 

Since Eq. (6) is linear and hyperbolic, there is for 
any fixed function l/> a unique function D",(x,x') of 
ordered pairs of points of M, which satisfies (6) as a 
function of the first point x, and also the following 
initial conditions [employing the notation X= (x,xo)]: 

D",(x,x') =0 } 
when Xo= xo'. 

(iJjiJxo)D",(x,x') = o(x-x') 
(8) 

Now this function also satisfies the differential equation 
as a function of x', or more exactly: 

Heuristic Proposition 1. D",(x,x') = -D",(x',x) for 
arbitrary x and x'. 

Argument: It suffices to show that -D(x',x) (sup­
pressing the dependence on l/>, which is here irrelevant) 
satisfies the defining conditions for D(x,x'). The first 
condition of Eq. (8) is obvious, and for the second 
condition, it may be noted that 

= -lim.-+oc1D(x',xo',x, Xo'+E) 
iJ[ -D(X"X)JI 

iJxo xo=xo' 

=lim.-+oc1[D(x', XO'+E, X, Xo'+E) 

-D(x',xo',x, XO'+E)] 

=~D(x"xo"X,xo) I 
iJxo' xo'=xo 

=o(x-x'). 

It remains only to show that M (x,x') vanishes 
identically, where M(x,x') = [Dx- V(x)]D(x',x), writ­
ing V=m2+p'(l/». To this end it suffices to show that 
M (x,x') is the solution to a Cauchy problem with 
vanishing initial data. We shall regard it as a function 
of x' with initial values given on the hyperplane 
xo=xo'. Since [Dx'- V(x')]D(x',x)=O by the definition 
of D(x,x'), and since Dx'- Vex') as an operator 
commutes with Dx- Vex), we have 

[Dx'- V(x')]M(x,x')=O. 

Now let us evaluate M(x,x') for xo=xo'. The only 
contribution whose vanishing is not apparent is 

(iJ2jiJxo)[2D(x',x)] I xo=xo'. 
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This may be written as 

lim ..... o(2e)-2[D(xo, xo+2e) - 2D(xo, xo+e)+ D(xo,xo)], 

where for the moment we suppress the dependence on 
x and x'. Now 

which by Taylor's expansion and the definition of 
D(x,x') is 

-2eO(X-X')+2e2[~2D(Xo" xo+2e)] +0(e3). 

axo xo' =xo+2. 

From the fact that D(x',x) satisfies the differential 
equation as a function of x', it follows that (a2/axo) 
X [2D(x,x')], evaluated for xo=xo', is the same as 
[~z- v (x)]D(x,x'), likewise evaluated for xo=xo', 
where ~ denotes the Laplacian; and hence the middle 
terms in the preceding expression vanishes. A similar 
evaluation applies to D(xo, xo+e), from which it results 
that ca2/axo) [2D (x',x)] I xo=xo'= lim ..... o(2 e)-2Q( e3)=0. 

It remains only to show the vanishing of (a/axo') 
X[M(x,x')] for xo=xo'. Writing Lz=~x- Vex), we 
need to examine 

Lx ---D(x',x). [ 
aD (x',x) I a

2 
a I 

axo' xo=xo' aX02axo' xo=xo' 

Since Lx involves no differentiation with respect to 
time, the first term is the same as 

[
aD (x',x) I 

L" , =L,p(x-x'). 
axo xo=xo' 

In evaluating the second term, we write xo=t, xo'=t', 
and note that 

a2 a a aa2 aa2 
--=-+-----. 
at2 at' at at' atat' at' atat' 

The term [(a/at') (a2 / at2)] develops as follows: 

--D(x',x) =-Lx,D'x',x) a
2 

a I a I 

at'2 at I'~I at 1'-1 

but Lz' and a/at commute, and Lx' involves no differen­
tiation with respect to time, so that the expression 
reduces to 

Lz'[~D(X"X)] =-Lz'o(x-x') 
at I~I' 

by an earlier result. This precisely cancels the first 
term, so to conclude the argument it suffices to show 
that 

[(a a) a2 
] -+- -D(x' x) =0. 

at at' alat' ' I~C,' 

Now 

(~+~)F(t,t') I 
at at' I-I' 

vanishes identically if F(t,t) is a constant, so it suffices 
to show that {[(a2/atat')]D(x',X)}t-I' is a constant, 
as a function of t. Actually it vanishes, for it may be 
written as 

lim ..... oe-lD(t+e, t+e)-D(t, t+e)-D(t+e, t)+D(t,t)] 
=lime-2[( e2/2)Lz,D(x,x') - (e2/2)Lx,D(x,x') 

+0(e3)]t-t'=0, 
since Lz,D(x,x') vanishes for t= t'. 

The function D~(x,x') thus determines a skew­
symmetric bilinear form B.p(l,l') in the solutions of (6): 

Thus for each pair of tangent vectors at cp there is a 
skew-symmetric bilinear functional of them; this is by 
definition a second-order differential form on M. This 
form will be denoted as fl, and called the fundamental 
form on M. To see the connection between this form 
and the similarly designated form in classical me­
chanics, it is useful to observe that 

in the case of the Klein-Gordon equation 
(p=O identically), 

where PI, P2, ... , ql, q2, . .. are "natural" coordinates 
onM. 

Specifically, the Pk and qk are obtained by choosing 
any complete orthonormal set of Klein-Gordon wave 
functions invariant under time reversal, say ft,h, ... , 
and writing a general real Klein-Gordon wave function 
f as 

where the tilde denotes the action of forming the 
Hilbert transform with respect to time. The con­
vergence of the infinite sum presents no essential 
difficulty, as is clear from the following argument, 
which also serves to make clear how such sums are to 
be interpreted. 

In a linear space, any differential form may be 
expanded into a product of differentials of linear co­
ordinates, showing that two differential forms are the 
same if they agree on all generators of infinitesimal 
translations. Hence it suffices to show that if j and g 
are arbitrary normalizable real Klein-Gordon wave 
functions, then 

(
aa) co (aa) fl -,- = 2: (dpkdqk) -,- ; 
aj ag ~l aj ag 
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here a/af stands for the vector field on M generating 
the transformations cp ~ cp+sf( - 00 <s< 00). The left 
side reduces to 

where D denotes the familiar scalar particle commuta­
tion function. The right side is 

It is readily seen that (apk/af) = (fJk) , etc., so that the 
identity of the two forms on infinitesimal translations 
reduces to the equation 

f ff(x)g(x')D(x-x')d4xd4x' 

=! Lk [(f,fk)(g,M- (f,fk) (g,fk)], 

which can be verified without difficulty; here (u,v) 
denotes the unique real Lorentz-invariant inner pro­
duct between the wave functions u and v (suitably 
normalized). 

To develop further the differential geometry of the 
function manifold M, we require: 

Heuristic Proposition 2. The transformation K",: 
lex) ~ fD",(x,x')l(x')dx', acting in the tangent plane 
T '" to M at cp, has the property that K i = - 1"" where 1", 
denotes the identity operation in T ",. 

Argument: This is easily seen for the case cp=O by 
the use of Fourier transforms, or by reduction to a 
similar property for the Hilbert transform in one 
dimension. Now suppose that cp is "small," in the 
sense that 

D",(x+su, x' +su) ~ Do(x,x') as s ~ ± 00 

for any timelike vector U; this means that for large 
times, Do(x,x') behaves like the "free" commutator 
function. In the equation 

it is reasonable to suppose that if, say, V is smooth 
and vanishes outside of a bounded set, then for large 
times the situation is asymptotic to that for the 
equation 

Dl=m2l. 

Rigorous results of this sort are not y~t available in 
the mathematical literature, but substantial results 
in this direction in nonrelativistic cases have been 
established by Kato, Cook, and others (d. e.g., 
Kuroda16 and the literature cited therein), and in any 
event such results have a high degree of plausibility 
from the standpoint of theoretical physics, constituting 

16 S. T. Kuroda, J. Math. Soc. Japan 11, 247 (1959). 

a weakened and classical version of the adiabatic 
hypothesis of quantum field theory (d. Yangl7). 

Now let 1 be any tangent vector at cpo Then l(x+su) 
is aymptotic, for large s and fixed timelike u, to a 
solution lo(x) of the free-field equation. Conversely, 1 
may be characterized as that solution of (6) that is 
asymptotic to the particular free-field wave function 
lo for early times, i.e., it may be regarded as the solution 
of a Cauchy problem with data given at time - 00. 

It is evident that 

l'(x) = f D(x,x')l(x')dx' 

is likewise a solution of (6); and 

I' (x+su) = f D(x+su, x')l(x')dx' 

= f D(x+su, x'+su)l(x'+su)dx'. 

Now as 
s ~ - 00, l'(x'+su) ~ lo'(x') 

and D(x+su, x'+su) ~ Do(x,x'). Assuming now that 
the passage to the limit may be made under the integral 
sign, it follows that 

I' (x+su) ~ f Do (x,x') 10 (x')dx'. 

Thus 

lim._oo(K",l) (x+su) = Ko lim._o,,l(x+su), 

where K 0 is the transformation on the free-field wave 
functions with kernel Do(x,x'). If we denote by T the 
transformation from the solutions of the free-field 
equation to those of (6) asymptotic to the given free­
field wave function at early times, the foregoing result 
means that 

T-IK",T=Ko• 

Hence T-IK",2T=K02, and since K02= -10, it follows 
that K",2= -1",. 

Now the property K",2= - 1 '" is a variety of functional 
equation having no explicit reference to the size of cp; 
if it is valid for sufficiently small cp, then it should be 
valid as a general rule. For example, if cp is a constant, 
then the result is evidently valid, although the argument 
for small cp certainly is not. 

It is now easy to derive: 

Heuristic Proposition 3. M becomes endowed with a 
positive definite Hermitian metric if the following defini­
tions are made: 

(1) For any two tangent vectors land l' at cp, the 
inner product is given by the equation 

(l,l')", = L", (l,l')+iO",(l,l'), 

17 C. N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950), 
G. Kiillen, Arkiv Fysik 2, 33 (1950). 
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where 

(2) Complex scalars act on tangent vectors 1 in 
accordance with the unique extension of the manner 
in which real scalars act together with the rule 

il=K",I. 

Argument: The only point that is not immediate 
from a quite general argument is the definiteness of 
the inner product, i.e., that (1,1)",>0 if 1 is not the zero 
tangent vector. Since n", is skew-symmetric, 

(l,l)",= L", (l,l) =n",(K",l,l) 

= f f D(x,y)l(y)D(y,z)l(z)dxdydz 

= f (f D(x,y)l(y)dy YdX. 

This shows that (1,1)","2.0, and that the equality holds 
here only if fD(x,y)l(y)dy vanishes. But this is K",l, 
which by Proposition 2 can vanish only if 1=0. 

The remainder of the argument is of a simple and 
familiar algebraic character-d. Ehresmann18-and 
may be omitted. 

It may be illuminating to consider the content of 
proposition 3 in the case 4>=0, which is easily de~lt 
with explicitly. It says that the space of real normahz­
able solutions of the Klein-Gordon equation may be 
given the structure of a complex Hilbert space. The 
action of i is given by the Hilbert transform with 
respect to the time variable; the imaginary part ~f 
the inner product is given by the form whose kernel IS 
the commutator function; and the real part is obtained 
by replacing one of the entries in this skew-symmetric 
form by its Hilbert transform with respect to tim~, 

obtaining thereby a positive definite real symmetrIc 
form. This complex Hilbert space is easily seen to be 
in one-to-one correspondence, in an essentially unique 
Lorentz-invariant fashion, with the conventional space 
of normalizable positive-frequency complex-valued 
Klein-Gordon wave function (d. SegaP9). 

To complete the analogy with a classical mechanical 
system, and make available fonnally the apparatus 
developed in Sec. 3, we require further: 

Heuristic Proposition 4. The form n is closed,-its 
covariant differential dn vanishes. 

Argument: The evaluation of dn(X,Y,Z) involves 
considerable computation which we shall not carry out 
here. There is another way of arguing, which while 
quite heuristic, throws light on the origin of the form n. 

As noted earlier, our manifold M may be considered 
as a submanifold of the manifold S of all scalar functions 
on space-time. Now any form on S gives rise, by 

18 C. Ehresmann, Proc. Int. Congr. Math. 1950 (Providence, 
1952). 

191. E. Segal, Phys. Rev. 109, 2191 (1958). 

restriction of the tangent vectors to tangency to M, to 
a fonn on M; and this restricted form will be closed 
if the original form was such. In particular this is true 
of the form Q on S defined by the equation 

(8 8) f dtdt' 
Q -,-- = f(x,t)g(x,t')dax--" 

8f 8g t-t 

or alternatively, as 

Q = Lk dpkdqk, 

where PI, P2, ... ql, q2· .. are coordinates on S similar 
to those defined earlier. 

We may formulate S as an infinite-dimensional 
Riemannian manifold by assigning to each tangent 
space S",-the general element of which has the form 
8/81/; for some formally unrestricted scalar function 1/;­
the usual inner product, i.e., [(8/81/;),(8/81/;')J 
=f1/;(x)1/;'(x)d4x. Thus any such tangent space is 
isomorphic to the real Hilbert space H of all real 
square-integrable functions over space-time. This sr~ce 
can be decomposed into eigenspaces of the self-adJomt 
operator 0, as a so-called "direct integral" of 
(infinitesimal) eigenspaces H.( - 00 <s< 00), so there 
is a corresponding decomposition of S", into eigenspaces 
S",(s). Now at the point 4>, Q gives a skew-symmetric 
bilinear form Q", in the vectors of S"" which may be 
restricted to any eigenmanifold packet, say that 
corresponding to the eigenvalues in the interval 
(s- ~ s+~) yielding a bilinear skew-symmetric form 
Q",(s-':"~, s+'~), in the vectors of this eigenII!anifold. Now 
as e -> ° the difference quotient (2e)-ln",(s- e, s+e) 
has a lim'it, which is a fonn Q",(s) in the vectors of the 
eigenspace corresponding to the eigenvalue s. It can 
be explicitly verified, by recourse to Fourier transforms, 
that if s=m2 , this form is the same as that introduced 
above with kernel D",(x,x'), for the case p(4))=O, the 
eigenspace S(m2) being identical with the T", defined 
above. 

Now S", may also be decomposed into eigenspaces of 
the self-adjoint operator O-p'(4)), and a similar for:n 
density Q",(s; p), which is a bilinear skew-symmetrIc 
form in the eigenspace of this operator with eigenvalue 
s, obtained. This eigenspace is identical with the T "', 
the tangent space to M at ¢ discussed before, and if 
we permit ourselves to use the plausible conj~ctu~e 
that the two intrinsically defined skew-symmetrIc bI­
linear forms on this space, Q",(m2 ; p) and n, agree in 
general, as they do in the case p=O, then it follows 
(formally) that n is closed, being a limit of closed forms. 

B. SUbsumption of the Conventional 
Field-Theoretic Formalism 

We now assume that we have the manifold M of all 
solutions of Eq. (6) set up as a Hermitian manifold 
with fundamental form n, and that linearly associated 
with each vector field X on M we have an operator 
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R(X), the following commutation relations being 
satisfied: 

[R(X),R(Y)]=R([X,Y])+Q(X,Y). 

(The closure of Q enters primarily as a means of assuring 
the consistency of these relations.) We wish now to 
define the "quantum field" cP(x) so that the conven­
tional commutation relations and transformation 
properties are derivable. 

For any scalar function f on space-time ("weighting 
function"), which is smooth and vanishes at infinity, 
we consider the vector field X" whose value at c/> is 
the tangent vector fD(x,x')f(x')dx'. Evidently, Xf 
depends linearly onf, and hence R(Xf ) does so also, so 
that we may write formally 

R(Xf) = f ¢(x)f(x)dx, 

for some operator-valued function cP on space-time. 
We may also write 

cP(x) = R(Xf) for f=a delta-function at x (formally). 

We wish to show that cP(x) satisfies the conventional 
commutation relations. To this end, note to begin with 
that the solution of the Eq. (6), with Cauchy data 
<p(x)=f(x) and (a/at)<p(x)=g(x) at t=t1, is 

r [_aD_(X_'~_') f(x') + D(x,X')g(X')]d3X', 
JXO '=t1 axo 

for it is evident that this is a solution of (6); that for 
t= t1, it attains the value f(x), by the Cauchy data 
defining D(x,x'); and using the fact proved earlier that 

[ 
a2 ] --D(xx') =0 " , axoaxo xo=xo' 

it follows similarly that its time derivative for t= t1 is 
g(x). Now consider the one-parameter group of motions 
on M which takes a given wave function c/> into one 
having the same values for t= t1, but with (ac/>/axo) 
displaced by sg(x) (- 00 <s< 00). The generator of 
this group of motions will be a vector field on M whose 
value at c/> will be the solution of Eq. (6) having cor­
responding Cauchy data on the line t= t1 ; it is, 
accordingly, 

f D(x,x')g(x')d3x, (xo' = t1), 

or X" wheref(x)=g(x)o(t-t1). Thus 

R(Xf) = fcP(x,li)g(x)dax. 

If we take another function g'(x) and consider the 
one-parameter group of transformations of M which it 
determines in the same manner as g(x), then it is clear 

that this group commutes with the group determined 
by g, since they both act additively on the Cauchy 
data at t= t1• The corresponding vector fields therefore 
commute, and substitution in the fundamental com­
mutation relation, after choosing g and g' as delta 
functions, gives the equation 

[¢ (x,t),¢ (x' ,t)] = Q(X"X f')' 

wheref(y)=o(y-x)o(yo-t) andf'(y) is the same with 
x replaced by x'. Substitution now in the equation 
defining Q now gives for the right-hand side of the 
foregoing equation the value D(x,t,x',t), which vanishes 
by the definition of D. Thereby so-called "local 
commutativity" (or "microcausality") is established. 

To evaluate [cP(x,t), (a/at)¢(x',t)], consider [cP(x), 
¢ (x')], where xo' = xo+ E, E being small. Directly from 
the fundamental commutation relations we have 

[¢(x ),¢ (x')]= R([Xox,Xox' ]+Q(Xox,X ox'). 

By an observation made earlier, Xoy has at c/> the value 

10'=YO D(x,x')o(x'-y)d3x', 

or D(x,y), as a function of x. Thus 

Q(Xox,Xox') = f f D(u,x)D(v,x')D(u,v)dudv. 

Now proposition 2 may be restated as 

f D</> (x,x')D", (x',x")l (x")dx'dx" = -lex) 

if I is in T</>. In particular, putting l(x)=D</>(x,y) with 
y fixed, it results that 

f D(x,x')D(x',y')D(y',y)dx'dy'= -D(x,y). 

It follows that Q(Xox,Xoz') = - D(x,x'). 
To evaluate [Xox,Xox']' recall that Xox' is the 

generator of the one-parameter transformation group 
on M, with the parameter s, which takes a general 
element c/> of M into that element c/>' such that 

c/>'(x) = c/> (x) } 
at xo=xo'. 

(ac/>'jat) = (ac/>!at)+so(x-x') 

From this characterization we shall show that it 
commutes with Xox' within terms of order E2. It is 
perhaps clearer to deal more generally with a manifold 
M defined by an equation of the form 

(au/at) = L(t)u, 

where L(t) is a nonlinear operator (i.e., L(t) depends 
on t, but does not involve differentiations with respect 
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to t). From this equation it follows that 

U(t') =u(t)+ (t' - t)L(t)u(t)+O[ (t' - t)2J. 

If we now consider a one-parameter group dependent 
ona parameter s, which displaces M so that u(t) -t u(t) 
+sv(t), t and v being held fixed, then the corresponding 
displacement of U(t') may be computed as follows: 

U(t') -t [u(t)+sv(t)J+ (t'-t)L(t)[u(t)+sv(t)J 
+O[ (t' - t)2J, 

= U(t')+ (t' -t)[oL(t)Ju(t)v(t)+sv(t)+O(S2) 
+O[ (t' - t)2J, 

=u(t' )+sWv(t)+O(S2)+Q[ (t' - t)2J, 

where W is a certain linear operator (dependent on t 
and t', but not on s). That is, the infinitesimal displace­
ment of u(t) by an amount sv, displaces u(t+ E) by an 
amount sWv+O(e2); and the displacement of U(t+f) 
acts similarly on u(t). Since vector translations com­
mute, it results that X.x and X.x' commute within 
terms of order e2• 

Such terms contribute nothing to the commutator 

[ 4>(X,t), ~(XI,t)]=~[¢(X)' ¢(x'n~t'. 
at at' 

The sole contribution is then 

a 
-[ -D(x,x'n~t'= -o(x-x'). 
at 

Now consider the transformation properties of 4>(x). 
Designating as a contact transformation one that pre­
serves the fundamental form Q on M, it is clear from 
the covariance of the construction of .p(x) that for any 
such transformation T, the field {;(x)=fi,(Tx) satisfies 
the same commutation relations. In a formal way the 
existence of an operator U (T) with the property that 
{;(x) = U(T)fi, (x)U (T)-I is clear, for U(T) may be 
taken as the operator taking a formally square­
integrable functional f(x) over M into the functional 
f(T-Ix). It is evident that in this quite formal sense 
the map T -t U (T) is a unitary representation of the 
group of contact transformations, but this is not 
strictly the case even for free fields unless T is suitably 
res~ricted, e.g., to be an isometry (d. footnote 
reference 2). 

In conventional field theory it is assumed that the 
quantized field "satisfies" the original field equation. 
This is an equation involving local products of fields, 
and so has no definite mathematical meaning. It has 
also . no empirical physical meaning. The present 
formalism eliminates these fundamentally objection­
able features of the conventional theory, but this 
advantageous feature in itself limits the possibility of 
showing complete formal equivalence to conventional 
theory. It can be stated that the quantized field fi,(x) 

is here derived in a covariant and unique manner from 
the classical system; but the equation that states that 
it "satisfies" the original differential equation has no 
clear-cut mathematical or physical meaning, and 
cannot be stated in the present formalism. 

C. Convergence Considerations 

Although local products of fields do not occur in the 
formulation of the dynamics of the present quantum 
fields, so that what have been regarded as the crucial 
divergences do not occur at least in the very formulation 
of the theory, some substantial emendations to Sec. 3 
are required to provide a rigorous framework for the 
case of a system of infinitely many degrees of freedom. 

Probably the most obvious difficulty is that the space 
L 2(M) of square-integrable functions over M is not 
really well defined in the infinite-dimensional case, so 
that the dynamical variables R(X) are not operators 
on any well-defined state vectors. There are two 
approaches possible here: (i) the extension of the 
integration theory in function space presented in a 
rigorous fashion for the linear case in footnote reference 
7; (ii) the adaptation of the representation-independent 
formalism of footnote reference 2, in which the dynami­
cal variables are essentially elements in a well-defined 
algebra of observables, which however are not operators 
in any ad hoc Hilbert space (states being treated 
through their expectation value functionals, i.e., as 
suitable linear forms on the observable algebra). 

The latter approach is simpler from a theoretical 
point of view, but it does not so readily lead to an 
explicit construction for the vacuum state, as does the 
former approach. In addition, much of what is involved 
in developing approach (ii) is parallel to part of the 
development of approach (i). It should therefore 
suffice here to describe (i). 

The main idea is to use the approximation of the 
infinite system in a physically meaningful sense by 
finite systems. For example, when M is a Hilbert space, 
it is approximated in a way by subspaces of large 
finite dimension; the relevant functionals on the 
Hilbert space are those which are essentially carried 
by a finite-dimensional submanifold (depend only on 
a finite number of coordinates), or can be approximated 
by such in an invariant fashion (d. footnote reference 
2); and the relevant vector fields are principally those 
generating translations, and so are carried by finite 
subsystems. In the case of a general Hermitian mani­
fold M we may assume, virtually as a definition of a 
nonpathological manifold, that it may be approximated 
by finite-dimensional Hermitian manifolds, in the 
following sense: There exist phase manifolds N of 
finite dimension, and maps F of M onto such an N 
preserving the Hermitian structure (Le., the induced 
map dF from the tangent space of M onto that of N 
is isometric in the finite-dimensional orthocomplement 
of the subspace of the tangent space on which dF 
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vanishes), forming a "directed set"; for two of the 
approximations (N,F) and (N',F'), there is another 
approximation (N",F') which may be interposed 
between M and each of the two, and being ample in 
the sense that for no tangent vector to M do all the dF 
vanish. A tame functional on M may then be defined as 
one of the form f[F(x)], for some function f on N in 
the conventional sense. The sum and product of tame 
functionals is again such, and an integral on M may 
be defined in the manner of footnote reference 7 once 
we have a well-defined linear functional on the collec­
tion of all tame functionals that is appropriate­
specifically, is nonnegative on nonnegative-valued 
functionals, and normalized to be unity on the unit 
function, identically one on M. 

The requisite functional may be obtained from the 
ground state of the generalized harmonic oscillator 
treated in Sec. 3, assuming the approximating finite­
dimensional manifolds satisfy the conditions given 
there. This is an intrinsic definition, and in the rela­
tivistic free-field case is known to yield the conventional 
theory. The R(X) may then be formulated as operators 
in the Hilbert space L 2(M) if the X are now restricted 
to be "tame," in the sense of being carried by a finite­
dimensional manifold: for some (N,F), X corresponds 
to a vector field on N. This gives a covariant class of 
canonical variables of which the conventional ones are 
formal functions. In this way all relevant questions 
concerning analysis on M may be brought back to 
corresponding questions concerning approximating 
finite-dimensional manifolds, which do not involve any 
nontrivial divergences. 

Probably the next most important difficulty is a 
purely classical and mathematical one. There is 
available at this time virtually no rigorous theory 
concerning the global solutions of a nonlinear hyperbolic 
equation, so that the manifold M used above of all 
classical solutions of Eq. (5) is a rather vague mathe­
matical object. As noted earlier, such a manifold may 
be defined as an integral manifold of a certain distribu­
tion of elements of contact, which are defined by linear 
equations, and so accessible by existing methods. To 
a noteworthy degree, the manifold itself is not required, 
but only such tangent planes to it. On the other hand, 
for a complete theory, the problem of the rigorous 
formulation of M cannot be evaded. It is not important 
to formulate M as a point set, actually, but only as a 
certain variety of (inverse) limit of finite-dimensional 
manifolds. 

The considerable mathematical difficulties here are 
in part of an altogether different character from those 
which seem relevant to the basic difficulties of quantum 
field theory. The relevant solutions of linear equations 
such as (6) must be expected to be not ordinary 
functions, nor even distributions in the sense of 
Schwartz, but quite highly generalized functions whose 
character cannot be described in an a priori explicit 
manner. These difficulties are connected with the 

determination of the precise character of the eigen­
functions associated with the continuous spectrum of 
a given linear partial differential operator, a problem 
which is fairly well understood and to a considerable 
extent resolved in the case of an elliptic operator, 
although not as yet in the case of a hyperbolic operator. 
Such rather technical problems may be avoided by the 
simple and physical expedient of smearing over the 
mass, in nonlinear analogy with the conventional treat­
ment of the continuous spectrum through the use of 
packets of eigenfunctions. 

The operator O-p'(cf» will be a self-adjoint one 
when properly formulated in Hilbert space, and will 
have a certain spectral decomposition into eigenspaces, 
one of which is defined by (6). If we replace this 
eigenspace by an eigenmanifold (= eigenspace packet) 
corresponding to the masses in the range (m-e, m+e), 
we obtain a tangent space whose elements are bona fide 
square-integrable functions. There seems no reason to 
doubt that in a quite rigorous and rather straight­
forward sense, the corresponding distribution of 
elements of contact will admit an integral manifold, 
which will be locally a Hilbert-space of functions. 
Formally this manifold is obtained by joining together 
all of the manifolds defined by (6) with m in the range 
(m- e, m+e); the manifold M of solutions of (6) is in 
a rough sense a limit of the more accessible and well­
defined manifolds M. just described.20 It may be noted 
incidentally that the global construction of this manifold 
should give, in combination with the developments of 
the first part of Sec. 4, concrete and nontrivial examples 
of quantum fields satisfying axioms similar to those 
axioms of Kallen and Wightman21 which do not pertain 
to vacuum expectation values, and in addition the 
canonical commutation relations for equal times. 

The results of the preceding section may be 
summarized as 

Principle III. The quantization of a given nonlinear 
hyperbolic partial differential equation may be accom­
plished by utilizing the intrinsic Hermitian structure, as 
a diiferentiqble manifold, of the manifold M of all 
classical wave functions for the equation, in formal 
accordance with principle I I. The infinite-dimensionality 
of M is dealt with by suitable approximation of M by 
finite-dimensional image manifolds, to which principle II 
is directly applicable. The field operators are among the 
canonical variables introduced in Sec. 3. The vacuum 
state is characterized as that invariant under the group 
of isometries of M leaving fixed the vanishing classical 
field, and in suitable cases may be more explicitly 
described as a limit of ground states of the approximating 
finite-dimensional systems. 

It ought to be noted that the foregoing isometry group 
will include effectively the Lorentz group, in the case of a 

20 Cf. the suggestive work of Dirac in a linear case in Proc. Roy. 
Soc. (London) A183, 284 (1945). 

21 G. KlilU;n and A. Wightman, Kg!. Danske Videnskab. 
Se1skab. Mat.-fys. Skrifter 1, No.6, 58 pp, (1958). 
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Lorentz-invariant equation involving only real masses. 
Any Lorentz transformation then transforms the 
elements of M in a fashion leaving invariant the 
fundamental form and the infinitesimal complex struc­
ture, as well as the vanishing classical field, and so 
determines an element of the group in question. The 
necessity of the real mass condition is clear from the 
impossibility of making a covariant separation of a 
free field into positive and negative frequency com­
ponents, in the imaginary mass case. Because of the 
close connection of this separation with the infinitesimal 
complex structure defined above, the latter will not be 
Lorentz-invariant in the imaginary mass case. On the 
other hand, the assumption that only real masses are 
involved is physically plausible and should be mathe­
matically demonstrable, when suitably formulated in 
rigorous terms, for the relevant equations. 

5. PARTICLES, INTERACTION, AND MODELS 

A. Quanta of Fields 

The correlation of any quantum field theory with 
empirical results depends in a practically essential way 
on the possibility of giving a particle interpretation 
for the theory. However, if we start with such an 
equation as 

D<I>=m2(/+l¢3(l~0), 

and quantize the system and obtain its physical vacuum 
in accordance with the preceding section, the Hilbert 
space of states of the incoming field is entirely deter­
mined (d. footnote reference 2) mathematically; and 
it is open to considerable question whether it contains 
any vectors transforming like the solutions of a Klein­
Gordon equation of mass m, or some other mass, let 
alone is equivalent to a free Bose-Einstein field of 
Klein-Gordon particles. The justification of an assump­
tion of this type must at this time be essentially 
empirical; its success in renormalization theory vali­
dates it as a physically motivated maneuver in applied 
mathematics, but neither bears directly on the mathe­
matical question involved, nor does it seeni to involve 
a heuristic principle likely to lead into an effective 
mathematical development. 

At this stage in the present theory we can only give 
a formal analysis of the states of the quantum field in 
terms of the particles whose wave functions are the 
tangent vectors at some fixed classical field <1>0; there 
is no mathematical reason to expect this analysis to 
be convergent or rigorizable, in fact there are indications 
for the opposite; in a sense the present theory does not 
so much remove the field-theoretic divergences as 
isolate them in the practice of giving an ad hoc 
elementary particle analysis of the states of the field. 

A fixed classical field <1>0 may be thought of as the 
background field of a particular observer, who will be 
able to observe directly only small deviations from <1>0, 
in the first instance. That is, classically he does not 

observe the manifold M of all states, but rather the 
tangent plane T 4>0 to M at <1>0, the vectors of which 
represent fields deviating only slightly from the back­
ground field, these being the only fields his apparatus 
will be able to prepare, without interfering significantly 
with the object of his observations, i.e., without pro­
ducing quantum effects. For him a quantum of the 
field is naturally represented by a vector in T <1>0, and 
the field variables most accessible to him are notably 
the occupation numbers for such quanta. To set up 
such occupation numbers in a formal theoretical way, 
let us suppose that the exponential map of the tangent 
plane T <1>0 into the manifold M is globally without 
singularities and applicable to the infinite-dimensional 
case. Uncertain as this assumption is, it is not the 
most questionable assumption needed, which is that, 
at least locally, the measure on M obtained by trans­
forming by the exponential map the canonical measure 
on T 4>0 is comparable with ("absolutely continuous 
with respect to") the physical vacuum measure on M. 
That this is a harmless assumption when M is finite­
dimensional arises from the fact that any two measures 
compatible with the manifold structure of M are com­
parable (mathematically, any two measures whose null 
sets are .invariant under translation are comparable); 
in the infinite-dimensional case this is very far from 
being true, even very "small" transformations (e.g., 
x~lx, for any l~±l) taking the free-field vacuum 
measure into incomparable ones (d. SegaP2 for a 
rigorous treatment of this question). But if the two 
measures are comparable, then a development similar 
to that given in Sec. 3 is possible, and for every unitary 
transformation U in T <1>0, there will be a corresponding 
transformation r(U) on the state vector space of the 
field, the map U ----+ r (U) being intrinsically defined, 
and a representation [r(UU')=r(U)r(U')]. Occupa­
tion numbers may then be defined as in footnote 
reference 2, pp. 27-31, as the infinitesimal generators of 
groups r(U,) for appropriate phase transformations 
Uti they will then have integral proper values, anni­
hilate the vacuum, etc. 

The isometry group Go acts naturally as a group of 
linear transformations in T <1>0, as in any Hermitian 
manifold; in the case of the manifold defined, e.g., by 
the equation D<I>=m2<1>+<I>3, with <1>0=0, this includes 
the usual action of the Lorentz group on the real 
solutions of the equation O<l>=m2<1>. If the action of 
Go is irreducible, as in this case, or more generally if 
disjoint invariant subspaces are orthogonal, then a 
complete set of group-theoretic quantum numbers of 
the usual variety may be set up. In this case the 
preceding paragraph gives in a formal way a complete 
analysis of the states of the field in terms of elementary 
particle occupation numbers, the particles being 
described by such quantum numbers (d. footnote 
reference 2, pp. 27-31). 

22 I. E. Segal, Trans. Am. Math. Soc. 88, 12 (1958). 
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The rigorous validity of an analysis of this type is 
both mathematically dubious and physically somewhat 
counter to current lines of thought skeptical of any 
absolute meaning to the notion of "elementarity" of 
an empirical particle. In any event, the foregoing 
analysis appears to exhaust the formally simple 
particle interpretations applicable to general hyperbolic 
equations, although for suitable special equations an 
essentially rigorous notion of elementary empirical 
particle may conceivably exist (no solid evidence in 
either direction being presently known). That is to say, 
there may be in some cases a Lorentz-invariant trans­
formation of the observables of a certain linear field 
into functions of the observables of the (interacting) 
field associated with M, although in even the most 
favorable of the cases of conventional theory, quantum 
electrodynamics, this seems unlikely, except as an 
approximation. 

B. Covariant Definition of the Interaction 

A puzzling feature of conventional theory has been 
its dependence upon an apparently artificial and un­
physical separation of the total Hamiltonian (or 
Lagrangian) into "free-field" and "interaction" con­
stituents (d. e.g., van Hove23). Such a separation 
appears in the present theory as the concomitant of 
the classical observer's limitation to the examination 
of relatively small displacements from his background 
field CPo. If CPo is time-independent, then time will act 
naturally in a linear, "noninteracting," essentially 
kinematical fashion on T <1>0; the actual dynamics, 
however, refers to the action of time on M, which 
will be nonlinear, when M is formally coordinatized by 
T <1>0, by the use, e.g., of the exponential map described 
earlier. These are classical motions; the corresponding 
quantum mechanical motions may be represented 
linearly in the function spaces over T <1>0 and M, re­
spectively. The latter motion is formally equivalent 
to a motion in the function space over T <1>0, by virtue 
of the correspondence between T <1>0 and M, making the 
assumption of comparability of the measures involved, 
as in the foregoing. Thus are obtained two one­
parameter groups of operators in the Hilbert space of 
square-integrable holomorphic functions over T <1>0. One 
of these is mathematically rather well defined, arising 
from the linear action of Go on T <1>0, and has as its 
generator the so-called "free-field" energy (relative 
to CPo). The other is only formally defined, and in fact 
the available evidence rather strongly indicates that 
it lacks rigorous existence, arising from the nonlinear 
action of Go on M, and.having as generator the "total" 
energy. In a formal way the S operator is thereby well 
defined by the conventional limit. This analysis applies 
both to renormalizable and nonrenormalizable theories; 
whether any useful numerical results can be obtained 
by a maneuver based on the use of partially empirical 

2J L. van Hove, Physica 21, 901 (1955). 

considerations depends of course, as in renormalization 
theory, on the equation and the ingenuity of the 
maneuver. 

In the case CPo=O, where the background field 
vanishes, Go includes the Lorentz group when the 
defining partial differential equation is Lorentz­
invariant and involves only real masses, and the fore­
going paragraph applies then not only to translations 
in time but to the entire Lorentz group. 

In simple conventional terms the foregoing indicates 
the following prescription for the separation of a total 
Lagrangian into "free-field" and "interaction" parts. 
The free-field constituent is the Lagrangian for the 
hyperbolic partial differential equation defining the 
first-order variation, in the vicinity of the vanishing 
field, to the manifold of all classical wave functions for 
the total Lagrangian. 

C. Models 

The short-lived character of the many attempts to 
classify in a systematic and economical way elementary 
particles on the basis of the Lorentz and conventional 
space-time, with or without an independent internal 
symmetry group, indicates that a broader attack, on a 
physically more conservative and theoretically more 
radical basis, would be desirable. One logical approach 
is that contemplating the use of alternative symmetry 
groups and/or space-time manifolds. However, if this 
is to have a reasonably clear-cut physical interpretation, 
it must be based on an adequately general field theory. 
The present theory, while extensively heuristic, is 
quite independent of the assumption that fields must 
be described by nonlinear partial differential equations 
in space-time, or, in fact, of the physical existence of 
quantum fields at all. Any infinite-dimensional phase 
manifold may be used as a basis, and other types of 
examples of such manifolds having symmetry groups 
of the proper orders of magnitudes are easily given. 
An example is the set of all smooth maps from a 
measure space into a finite-dimensional Hilbert mani­
fold, a natural generalization of the much used linear 
function spaces of smooth square-integrable functions. 

The fundamental symmetry group Go will be that 
leaving a designated point CPo of the basic manifold 
invariant. The primary elementary particles of the 
theory are then represented by the vectors in the 
irreducibly invariant subspaces of T <1>0 under the 
naturally induced action of G. Group-theoretical 
quantum numbers will then be definable in the fashion 
indicated earlier. For example, the elementary particle 
models described in footnote reference 5 set up certain 
representations and quantum numbers for symmetry 
groups G having the group constituted by the Lorentz 
group together with space-time position coordinates 
asa degenerate limiting case. From the present stand­
point this means that G is a subgroup of the isotropy 
group leaving fixed the vanishing field; and the stated 
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action is the natural linear action of G on the infinitesi­
mal classical fields. The description of the manifold M 
is necessarily a good deal more complicated than this, 
and is not required in the first instance for particle 
classification purposes. 

It ought to be noted that the manifold M can in 
principle be built up from the knowledge of the tangent 
space in the vicinity of each background field. It thus 
has a certain conceptual quasi-empirical existence. 
Insofar as a relatively arbitrary classical background 
field can be experimentally maintained, and the re­
sponse of the system to relatively arbitrary small 
disturbances ascertained, these tangent spaces are 
experimentally approximable to an arbitrary degree 
of accuracy, quite without any ad hoc assumptions as 
to the particle interpretation of the field,the necessity 
of a basic partial differential equation, etc. The struc­
ture of the tangent space at the vanishing physical 
field is of great interest in itself, being the basis for the 
classification of "free" particles; conversely, any 
empirical linear description of the free particles can 
be regarded as an approximate description of this 
tangent plane. A given type of conventional quantum 
field will in general have no direct empirical classical 
analog, but this may be ascribed to a lack of closure 
on the part of the corresponding theory. Ultimately 
all measurements are reducible to classical ones, and 

the classical analog to the field of aU elementary 
particles may be considered to be the set of all classical 
fields, in speculative theory constructible as a manifold 
through the examination of the response to all possible 
small classical disturbances of an arbitrary background 
classical field. There appears to be no practical possi­
bility of setting up a useful empirical manifold M in 
this fashion, but the foregoing conceptual experimenta­
tion serves at least to indicate that the manifold M 
has a certain fairly direct intuitional connection with 
physical experience that is lacking in the Lagrangian. 

The quantum, as contrasted with the classical, field, 
plays primarily a formal part in our analysis, and 
serves mainly only to connect the present formulation 
with the conventional one. Quite without its use the 
total energy of the field and the vacuum state, e.g., are 
well-defined (through the use of principle III). In 
view of the apparently inevitably dubiously physical 
character of the quantum field, the possibility that it 
may well be theoretically expendable is not very 
surprising. 
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The Kemmer equation is written in Riemann space. The form of the equation, the supplementary rela­
tions and the form of the covariant derivatives of the operators f3~ are considered. As a check of the equation 
it is shown that the equations for the values zero and one of the spin can be obtained from this generalized 
Kemmer equation with the help of generalized Fujiwara operators. In particular the equation for photons 
in interaction with the gravitational field is obtained. 

I. INTRODUCTION 

T HE relativistic wave equation of the electron in 
Riemann space was analyzed recently by P. A. M. 

Dirac.1 Special attention was given to the covariance of 
the equation under the rotations of the four-legs hr 
whose components hrp. are connected with the com­
ponents gp.. of the metric tensor by means of the well­
known relations 

The relativistic electron wave equation in Riemann 
space was studied by several authors and is different 
from the Dirac equation of special relativity. One has 

1'110[(0/ oxp.)- r p.]IP+tn1/t=O, 

where 1'110 are matrices which depend on the coordinates. 
The matrices r" are traditionally obtained from the 
value of the covariant derivative of the 1'".2-4 

Another method of handling the theory was indicated 
by Dirac in the paper previously mentioned. He 
assumed a form for the equation and a connection 
between the Lorentz coefficients and the matrix of 
transformation of the wave function. The form of the 
matrix r" was assumed independently of any other 
hypothesis and the covariance of the equation was then 
proved. 

This procedure of Dirac can be applied to the formu­
lation of the Kemmer equation for spin-zero and spin­
one particles5 in Riemann spaces. In this case, as we 
will show in the present paper, the matrix corresponding 
to r" is null, this value being a consequence of condi­
tions that one can impose in this case. It is worth men­
tioning that these conditions cannot be admitted in the 
Dirac theory. 

The physical interpretation and the supplementary 
conditions are indicated in Sec. III. The separation of 
the equations for the two values of the spin is made with 
the help of generalized Fujiwara operators6,7 and is 
considered in Sec. IV. 

1 P. A. M. Dirac, Festschr. Max Planck 1958, p. 339. 
2 W. Pauli, Ann. Physik 18, 337 (1933). 
3 B. S. De Witt and C. M. De Witt, Phys. Rev. 81, 116 (1952). 
• D. R. Brill and J. A. Wheeler, Revs. Modern Phys. 29, 465 

(1957). 
5 N. Kemmer, Proc. Roy. Soc. (London) A113, 91 (1939). 
6 I. Fujiwara, Progr. Theoret. Phys. Kyoto 10, 6 (1953). 
7 H. Umezawa, Quantum Field Theory (North-Holland Pub­

lishing Company, Amsterdam, 1956), Chap. V. 

II. KEMMER EQUATION 

The relativistic wave equation of Kemmer for spin­
zero and spin-one particles has the form 

{3r~/oxr+tn1/t=O, (1) 

where x'=x, x2=y, x3=z, x4=ict and the matrices {3r 
satisfy the relations 

{3r{3B{3I+{3I{3B{3r= {3roBI+{3lo", (2) 

where OBI is the Kronecker delta. 
As in the case of the Dirac theory, the Lorentz trans­

formation with coefficients as' is connected with a trans­
formation of the wave function 

IP=SIP'. 
For the covariance of the equation, we assume the 

following relation between such an S and the as': 

a{S-1{3IS={3r. (3) 

The introduction of a phase factor in S does not 
alter the relation (3). The matrix S is not determined, 
however, uniquely by (3), even if we choose the value 
of this factor. We can consider, therefore, the following 
conditions, instead of (3): 

a.'S+'fJ4{3BS='fJ4{3r, 

S+'fJ4S=S'fJ4S+='fJ4, 

a.'S+'fJ~BS='fJ~T, 

where S+ is the H.C. of S. 

(4a) 

(4b) 

The 'fJT (r= 1, 2, 3) are matrices of square one. We 
will assume, however, that 

('fJ4)2= -1. 

In the Dirac theory there are relations analogous to 
(4a) and (4b): 

a.'S+'Y~BS='Y~r, S+'Y4S= S'Y4S+= 1'4. 

These conditions can be obtained from 

a"S-~BS='YT 

on account of reality conditions of the aB
T and with the 

help of the Schur lemma.8 In the case of the Kemmer 
theory however, there are three matrices that commute 

8 R, H. Good, Jr., Revs. Modern Phys. 21, 187 (1955). 
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with all the (3" so Eqs. '(4a) and (4b) are not equivalent 
to (3). 

In order to write the Kemmer equation in the 
Riemann spaces, we will introduce a set of four ortho­
normal vectors h r ". The Latin indices characterize the 
vectors and the Greek ones are connected with their 
components. These components, on the other hand, are 
related with the components of the metric tensor g". 
by means of 

(Sa) 

The orthonormal relations are 

(Sb) 

A rotation of the four-legs characterized by a.r with 
rand s running from one to four, alters their components 
according to 

(7) 

Let us assume now the following form for the Kemmer 
equations in Riemann space: 

(7) 

where the comma denotes partial derivative, as usual. 
This equation is evidently covariant under general 
transformation of coordinates because of its tensor 
form with respect to f.I.. To demonstrate its covariance 
under the rotations of the hr", let us consider the fol­
lowing transformation 

if;=S1/, (8) 

associated with the rotation. S is now a function of the 
position and the relations 

hr"s+'Y/vrs = hr''''Y/Vl", 

h."S+'Y/4.q'S= hr''''Y/4'Y/r, 

(9a) 

(9b) 

among the components hr" and hr'p. before and after 
the transformation, are consequences of (4a), (4c), and 
(6). 

If we substitute (8) and (7) and take (4b) and (9a) 
into account, we obtain 

h/"{3r(if;,,,'_'Y/4S+'Y/4S,p.if;')+tm/I' =0. 

To prove the covariance, one has to demonstrate that 

'Y/4S+'Y/4S,I'=0. 

Let us consider now the quantities r,.' defined by 

(10) 

The semicolon denotes covariant derivative with 
respect to xl'. We have 

'Y/4r,/ = -tha'phbp;,.''Y/4'Y/a..q4.q4.qb 

= - thaPs+'Y/4.qaS'Y/4(hbpS+'Y/4.qbS); I' (11) 

on account of (9b). Quantities with Latin indices are 
scalars with respect to coordinate transformations. The 
covariant derivative indicated in (11) has three terms. 

The first is zero because 

S'Y/4S+,p. (12) 

is necessarily anti-Hermitian, on account of (4b). As 
this expression (12) contains 'Y/\ it is equal to the sum 
of the matrices 'Y/4{3', 'Y/4.qiq'~k, {34{3i{3j multiplied by con­
venient coefficients, the indices i, j, k, and 4 being all dif­
ferent. In view of the properties 

'Y/ i{3k= - {3k'Y/ i 

for i different from k, and 

{3iqi= 'Y/ i{3i= {3i, 

for equal indices (without sum), we have, in view of 
(Sb), 

'Y/4'Y/aS'Y/4S+.I''Y/4.qa= O. 

The other terms of the covariant derivative of (11) 
can be evaluated with the help of (4b) and (Sb) and 
the values of the squares of 'Y/r. We have, therefore, 

(13) 

where r" is the analog of r,.' in the unprimed system. 
On the other hand, we have in view of the com­

mutation properties of the 'Y/ r and the null value of the 
covariant derivative of the metric tensor gl" with 
respect to any XU : 

r,.' = !(ha'phbp;,.' +hb'phap;,.')'Y/4.qb=O. 

The value of r" can be calculated in the same way. 
Therefore, we can write, because of (13), 

S+'Y/4S,,,=0. 

III. PHYSICAL INTERPRETATION AND 
SUPPLEMENTARY CONDITIONS 

The form of the generalized Kemmer equation (7) 
suggests the value of the covariant derivative of the {31' 
defined by 

(15) 

The form is simpler than the corresponding form of 
the '}'I' and is 

The value of this derivative can be taken as 

{3";u=O 

(16) 

(17) 

and is covariant under the rotations of the hr" as we 
can see easily with the help of (9a) and (14). Equation 
(14) affords the introduction of the current density jl' 
as well as the proof of its conservation law. Let us 
consider the quantity 

jp.= hr1'if;+'Y/4{3rif; = if;+'Y/4{31'if;. 

These j" behave like a vector under coordinate 
transformations and do not alter under rotations of the 
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hr" for, in view of (9a) and (4a), we have 

hr'if;+7J4(3"S = hr' 'if;+1 7J4(3rl//. 

The conservation law 

j";,,=O 

is a consequence of (7), (18), and of the adjoint equation 

(a1;tjax")(3"-m1;t=O, 
where 

Another consequence of the value of the covariant 
derivative of the (3" is an additional relation analogous 
to Eq. (6) of the Kemmer paper. If we multiply the 
wave equation (7) by (3~(3",a~ and take account of (16) 
and (17), we have 

a"Y;=(3~(3",aAY;. 

This proof depends strongly on the hypothesis that 
the mass of the particle is different from zero. 

IV. SEPARATED WAVE EQUATIONS 

(a) Spin Zero 

To obtain the wave equation for zero-spin particles, 
we shall introduce the operators6 

P= «(31)2«(32)2«(33)2«(34)2, Pr=P(3r, (18) 
and 

p"=p(3,,=h,,rp(3r. 

The P is independent of the position. We shall 
assume as in the case of the (3" that 

The relation 
P~.=Pg"., 

is a consequence of (Sa), (15), and of 

Prf3.=Pora • 

(20) 

(21) 

The first equation for these particles is obtained by 
multiplying Eq. (7) by P. We have, because of (16) 
and (17), 

a,,(p(3'if;) + { : }p(3"'1/;+mpy;=o. (22) 

If we introduce the notation 

P(3'if;= U", and Py;= U, 

we can write (22) in the form 

We get the second equation by multiplying Eq. 
(7) by P., taking into account the value of P;a' and by 

applying (20) and (18). We obtain 

a.U+mU.=O. 

(b) Spin One 

In this case we shall introduce the operator 

R"=hr,,Rr, 

where Rr is defined by the relations 

Rr= - ((31)2 «(32)2 «(33)2(3r(34 for r= 1,2, 3, 

Rr= ((31)2((32)2((33)2(1-(34)2 for r=4. 

The following properties can easily be proved 

R~.= - R.(3", (23) 

R~.(3~ = g.~R,,- g"., . .R.. (24) 

The relations (16), (17), (23), and (24) are consistent 
with the following definition: 

(25) 

We obtain the first equation by applying R. to 
Eq. (7), if we take into account (16), (17), and (25) 
as well as the equation 

We obtain 

or 
(26b) 

where the following notation was used: 

Ua=RaY;, F."=mR.(3,,,Y;. 

The second equation results from the application of 
the operator R.(3A to Eq. (7). If we use (16), (17), 
(24), and (25), we obtain 

F.~=a.UA-aAU •. (27) 

Equations (26) and (27) are to be used for particles 
of spin one in interaction with gravitation, if the mass 
of the particle is different from zero. We can assume 
now Eqs. (26) and (27), independently of the 
process that we have used to obtain them, for the 
analogous equations in the free case can be introduced 
independently of the Kemmer equation. In this case, 
we have equations for photons in interaction with 
gravitation if we take the mass as being zero. 
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Cyclic representations of the canonical commutation relations and their connection with the Hamiltonian 
formalism are studied. The vacuum expectation functional E(j)= ('lro,ei~(fhlro) turns out to be a very 
convenient tool for the discussion. The uniqueness of a translationally invariant state (vacuum) is proved 
under the assumption of the cluster decomposition property for E(j). The existence and near uniqueness 
of the Hamiltonian in cyclic representations of the canonical commutation relations are established. The 
conditions for the relativistic invariance of the theory are stated in terms of vacuum expectation values 
at a fixed time. It is shown that E(j) is the Fourier transform of a quasi-invariant nonnegative measure 
on the space of all linear functionals of the test functions. 

1. INTRODUCTION 

I N this paper we shall discuss Hamiltonian formalism 
and canonical commutation relations for a self­

interacting neutral scalar field in a mathematically 
rigorous way. Generalizations to one or more tensor 
fields are easy and do not add any essentially new 
feature. Not so obvious is the extension of the formalism 
to the case of spinor fields, which is outside the scope 
of this paper. 

In the conventional approach, one takes the field 
cp(x) and its canonical conjugate rex) at time t=O as 
the basic variables which allow a complete description 
,of the system, and one assumes the canonical commu­
tation relations 

[cp(x), cp(x')J= [r(x),r(x') J=O, 

[cp(x),r(x')]= io(x- x'). 
(Ll) 

The time-development of the system is determined 
by the Hamiltonian which is given as a function of cp 
and r, 

H=H(cp,r). (1.2) 

It has been pointed outl that the relations (1.1) are 
not sufficient to define the field operators (up to unitary 
equivalence) even if irreducibility2 is assumed, in 
contrast with the case of particle mechanics.3 There is 
an immense manifold of inequivalent representations 
of the relations (1.1) and therefore the problem arises: 
Which one of them is appropriate for a particular 
model? By "model" we mean an explicit expression 
(1.2) for the Hamiltonian. The point is that a particular 
expression for the Hamiltonian will define a bona fide 

* Supported in part by the Air Force Office of Scientific 
Research, Air Research and Development Command. Condensed 
from a part of the thesis submitted to the Faculty of Princeton 
University for partial fulfillment of Ph.D. requirements. 

t Present address: Department of Nuclear Engineering, Kyoto 
University, Kyoto, Japan. 

1 K. O. Friedrichs, Communs. Pure App!. Math. 5,367,383 
(1952); L. van Have, Physica 18, 145 (1950); A. S. Wightman 
and S. S. Scltweber, Phys. Rev. 98, 812 (1955). 

2 See Sec. 3. 
3 J. von Neumann, Math. Ann. 104, 570 (1931). 

operator only if an appropriate representation of the 
canonical variables is chosen.4 •5 

There have been various mathematically rigorous 
attempts at establishing a classification scheme for 
inequivalent representations of (1.1).6-9 There has also 
been a heuristic discussion of the relation between the 
form of the Hamiltonian and the appropriate repre­
sentation.lo Here we intend to treat this latter problem 
in a mathematically rigorous fashion, restricting our 
discussion to cyclic representations of the canonical 
variables. (The cyclicity as well as the irreducibility 
are discussed in Sec. 3.) 

The main objective of this paper is to prove that, 
under certain conditions, the vacuum expectation value 
of expiJ cp(x)f(x)dx, which is denoted by E(f), is 
sufficient to determine (up to unitary equivalence) the 
Hilbert space (Sec. 4), the representation of both cp 
(Sec. 4) and r (Sec. 7) in this Hilbert space, the vacuum 
state (namely, the unique translationally invariant 
state, see Sec. 6), the form of the Hamiltonian (Sec. 8), 
and the representations of transformation groups 
(Euclidean group in Sec. 5 and Lorentz group in Sec. 9). 
The positive definiteness of the Hilbert space as well 
as the invariance requirements will give restrictions on 
E(f). It is also shown in Sec. 6 that, for a given cyclic 
representation of cp, there is at most one E(f) satis­
fying translational invariance and cluster decom­
position property and hence the representation of cp 

4 If the Hamiltonian is invariant under spatial translations and 
has a nondegenerate discrete eigenstate which is different from 
the free vacuum, then the Fock representation is not appropriate 
for this Hamiltonian. See R. Haag, Kg!. Danske Videnskab. 
Selskab, Math.-fys. Medd. 29, No. 12 (1955). 

6 Apart from the problem of choosing an appropriate repre­
sentation, there may be other problems to be settled before one 
can give an exact me.aning to a given formal eX{>ression for the 
Hamiltonian. For example, the expression f cp(x)'dx is by itself 
not well defined. 

6 L. Girding and A. S. Wightman, Proc. Nat!. Acad. Sci. U. S. 
40, 622 (1954). 

7 I. E. Segal, Trans. Am. Math. Soc. 88, 12 (1958). 
8 J. Lew, thesis, Princeton University, Princeton, New Jersey, 

1960. 
9 H. Fukutome, Progr. Theoret. Phys. (Kyoto) 23, 989 (1960). 
10 F. Coester and R. Haag, Phys. Rev. 111, 1137 (1960). 
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also determines 1r, the vacuum state, the Hamiltonian, 
and the representation of transformation groups. 

In Sec. 10, we shall show that E(f) is the Fourier 
transform of a quasi-invariant positive measure. This 
establishes a connection between the work of Segal,7 

Lew,8 and Fukutome9 and our approach. The main 
result of this last section was also obtained by Lew8 and 
by Fukutome.9 

Applications of the present formalism to special 
models will be treated in a separate paper. 

2. DEFINITION OF REPRESENTATIONS OF THE 
CANONICAL COMMUTATION RELATIONS11 

The quantities lP(x) and 1r(x) cannot be considered 
as ordinary operators because of the 0 function in (1.1). 
Hence we consider the smoothed-out fields 

1P(f) = f lP(x)f(x)dx, (2.1) 

1r(g) = f 1r(x)g(x)dx, (2.2) 

where f(x) and g(x) are real-valued functions belonging 
to certain classes of functions, DI and D2, respectively. 
Equation (Ll) implies 

[1P(/1),1P(f2) J= [1r (gl) ,1r (g2) J=O, (2.3) 

[1P(f),1r(g)J=i(f,g), (2.4) 
where 

(f,g) = f f(x)g(x)dx. (2.5) 

In order to avoid complications due to the domain 
question of the unbounded operators 1P(f) and 1r(g), 
we introduce the unitary operatorsl2 

U (f) = expilP (f) , 

V(g)=expi1r(g). 

(2.6) 

(2.7) 

The linear dependence of 1P(f) and 1r(g) on f and g 
together with (2.3) implies 

U(/1)U(h) = U(/I+ h)' 

V(gl)V (g2) = V(gl+g2). 

Equation (2.4) is replaced by 

U(f) V (g) = V(g)U(f) exp-i(f,g). 

(2.8) 

(2.9) 

(2.10) 

fhese three relations together with 
U (f) and V (g) imply 

the unitarity of 

U(O) = V (0) = 1, 

U(f)*=U(-f), 

V(g)*=V(-g). 

(2.11) 

(2.12) 

(2.13) 

11 Cf. also footnote references 6 through 9. 
12 This formulation of the canonical commutation relations was 

first used by H. Weyl [Z. Physik 46, 1 (1927)J. 

Furthermore, U(tf) and V(tg) are continuous in the 
real variable t. 

Conversely, if one has U(f) and V(g) satisfying (2.8) 
through (2.13) and if U(tf) and V(tg) are continuous 
in t, then the infinitesimal generators defined by 

1 d I 1P(f) =-. -U(tf) , 
~ dt 1=0 

(2.14) 

1 d I 1r(g)=--V(tg) , 
i dt 1=0 

(2.15) 

are linear in f and g, self-adjoint, and satisfy (2.3) and 
(2.4) on a dense domain of the Hilbert space.13 

Thus, we define a representation of the canonical 
commutation relations in the following way. 

Definition 

Given two real linear spaces DI and D2 with an 
inner product (f,g) defined between an arbitrary feDl 
and an arbitrary geD2. By a representation of the 
canonical commutation relations for the pair (D 1, D 2), 

we mean a pair of mapping U and V from Dl and D2, 
respectively, into the set of unitary operators in a Hilbert 
space such that (2.8) through (2.10) [and hence, (2.11) 
through (2.13)J are satisfied for f, /1, heD l and g, gl, 
g2eD2, and such that U(tf) and V(tg) are weakly con­
tinuous in t for fixed feDl and geD2. 

For unitary operators, the weak continuity assumed 
here is equivalent to strong continuity. We also note 
that 

n n 

UeL t;ji) and VeL tigi) 
i=l i-=l 

are continuous in ti for fixed fieDl and gieD2 (i= 1,' .. ,n). 
The elements of Dl and D2 are called test functions 

for the field and its conjugate. In the following, we do 
not specify DI and D2. For a theory of a self-interacting 
neutral scalar field, they are sufficiently large classes 
of sufficiently smooth, real functions on three-dimen­
sional space and one expects that the exact choice of 
DI and D2 is immaterial for the physical content of the 
theory.14 For a theory of several interacting fields, we 
can take as DI and D2 the direct sum of the DI and D2 
for individual fields. We note that the work of Gfu"ding 
and Wightman6 refers to the case where DI=D2 consists 
of all finite linear combinations of a chosen basis fi. 

3. CYCLICITY AND IRREDUCffiILITY 

In this section we will define cyclicity and irreduci­
bility of a representation and discuss their physical 
meaning. The cyclicity of representations will be 
assumed in later discussions. 

13 J. von Neumann, Math. Z. 30, 3 (1929); L. Garding, Proc. 
Nat\. Acad. Sci. U. S. 33, 331 (1947). It is not known whether one 
can take the same domain for all f and g. 

14 The choice may be important in order to obtain a convenient 
mathematical scheme. 



                                                                                                                                    

494 H. ARAKI 

We denote by U, m, and lim, the sets of operators 
{U(j) IfeDl }, {V(g) IgeD2}, and {U(j) V(g) IiED1, gED2} , 

respectively. We denote by ~(X) the algebra generated 
by the operators of a set X and the unit operator. The 
most general element of ~(U), for example, is 

n 

L CiU(ji), (3.1) 
i ..... l 

where fiEDl and the Ci are complex numbers. We denote 
by ~ (X)'li 0 the linear subset of the total Hilbert space 5.) 
which consists of all the vectors obtained by the appli­
cation of the operators in ~(X) on a fixed vector 'lio. 
We denote by 5.)(X,'lio) the closure of ~(X)'lio. 

If ~(X,'lio) is the total space 5.), then the vector 'lin 
is said to be cyclic relative to X. If there is at least one 
cyclic vector relative to X, then the Hilbert space is 
said to be cyclic relative to X. Thus, a cyclic representa­
tion of U is a representation of U where the whole 
Hilbert space is spanned by the vectors of the form 

n 

L CiU (ji)'liO• 
i=l 

Later, we are going to assume that the vacuum state 
is a cyclic vector. 

The commutant X' of a set X of bounded operators 
is the set of all the bounded operators which commute 
with all the elements of X. The bicommutant (X')' will 
be denoted by X". X is contained in X" and (X')" is 
always equal to X'. If X is a self-adjoint set and is 
equal to X", X is called a W*-algebra (ring of operators 
in the original terminology of von Neumann). It is 
known15 that for a self-adjoint set X containing the 
unit operator, X" is the weak and at the same time the 
strong closure of X. Thus, in the case of a self-adjoint 
set X one may say that X" consists of functions of the 
operators in X. 

A self-adjoint set X of bounded operators is said to 
be maximal Abelian if X'=X". In this case X is 
obviously Abelian and there are no bounded operators 
other than function of its elements, which can be added 
to X to form a larger set of commuting bounded 
operators. Therefore, this is what Dirac calls a complete 
set of commuting observables.16 

The following theorem relates a complete set of 
commuting observables with cyclicity of the Hilbert 
space relative to a set of commuting bounded operators, 
giving the latter a physical meaning. 

Theorem 3.1 

If a self-adjoint set X of commuting bounded opera­
tors has a cyclic vector, then X is maximal Abelian. 

16 For example, J. Diximier, Les Algebres d'operateurs dans 
l'espace Hilbertien (Gauthier-Villars, Paris, France, 1957), p. 44, 
corollaire 1. 

16 P. Dirac, The Principle of Quantum Mechanics (Oxford 
University Press, New York, 1947), 3rd ed., p. 57. 

Conversely, if X is maximal Abelian and if the Hilbert 
space is separable, then X has a cyclic vector. (See 
Segal17 for the proof.) . 

The relation between the most general representation 
and cyclic representations can be understood through 
the Gelfand's theorem18 which states that any repre­
sentation of a c*-algebra is a direct sum of cyclic repre­
sentations.19 

A subspace 5.)1 of a Hilbert space 5.) is called in­
variant under a set X of linear operators if, for any 
'li E5.)l and A EX, A'li is in 5.)1. A Hilbert space is said 
to be irreducible relative to X, if it has no invariant 
proper subspace relative to X. 

If a Hilbert space 5.) is irreducible relative to a set X 
of bounded operators, then every vector is cyclic 
relative to X. The converse is also true. A necessary and 
sufficient condition for the irreducibility relative to a 
self-adjoint set of bounded operators is that X' consists 
only of multiples of the identity operator (Schur's 
lemma.20) This lemma shows that if the space is irre­
ducible relative to X, then every operator is expressible 
in terms of the elements of X. 

Let us call a self-adjoint set X of bounded operators 
in a Hilbert space 5.) a "determining set of observables" 
if the knowledge of the expectation values of all the 
operators of ~(X) in a state determines the state up to 
a multiplicative C number, namely, if 

for all RE~(X) implies q>=A'li with some complex 
number A. 

The following theorem states the equivalence of the 
notion of irreducibility with that of a "determining set 
of observables," giving the former a physical meaning. 

Theorem 3.2 

A self-adjoint set X of bounded operators is deter­
mining if and only if the space is irreducible relative 
to X.21 

An irreducible representation of the canonical com­
mutation relations is necessarily cyclic relative to um. 
However, it is not necessarily cyclic relative to U, nor 
does the cyclicity relative to U imply the irreducibility 

171. Segal, Mem. Am. Math. Soc. No.9, II (1951), corollaries 
1.1 and 1.2. 

18 M. Neumark, Sowjetische Arbeiten zur Funktionalanalysis 
(Verlag Kultur und Fortschritt, Berlin, 1954); "Involutive 
Algebren," p. 114, Sec. 5.2, IV. 

19 A c*-algebra is a complete normed algebra with adjoint 
operation. Although ~(U) is not a c·-algebra, one can assign a 
unique (uniform) norm to the elements of ~(U) due to the 
presence of the operators V (g) (assuming that D2 separates D1 ; 

see footnote reference 8). Hence, one can consider the completion 
c·(U) of ~(U) relative to this norm instead of considering ~(U). 
Note that the cyclicity relative to ~(U) is equivalent to that 
relative to c*(U). 

20 M. Neumark, footnote reference 18, p. 114, Sec. 5.3, V. 
21 M. Neumark, reference 18, p. 122, Sec. 6.4, theorem 4j 

H. Araki, thesis, Princeton University, 1960, p. 25. 
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relative to WB.22 Irreducibility relative to WB is auto­
matic for a cyclic representation with a cyclic vector ~ 0 
if the Hamiltonian H is a function of W./323 and if ~o is 
a nondegenerate eigenvector of H. 

4. CYCLIC REPRESENTATIONS AND VACUUM 
EXPECTATION VALUES 

In this section, we will relate the problem of cyclic 
representations with the problem of vacuum expectation 
values. 8 .10.24 

For any normalized vector ~ 0 and for any self-adjoint 
set X of bounded operators, the functional on ~(X) 
defined by 

E(R) = (~o,R~o), R~~(X) (4.1) 

satisfies the following conditions, 

E(XlRl+X~2)=XlE(Rl)+X2E(R2)' (4.2) 

E(R*)=E(R)*, (4.3) 

E(R*R) ~O, (4.4) 

E(l)= 1, (4.5) 

where Al and A2 are complex numbers and R l , R2, and 
R belong to ~(X). 

The following theorem states the converse. 

Theorem 4.1 

For a given self-adjoint algebra ~ containing 1, and 
for a given linear functional E(R) on ~ satisfying (4.2) 
through (4.5), there exists a Hilbert space S), a nor­
malized vector '1'0 in S) and a cyclic representation of ~ 
by operators (not necessarily bounded) defined on a 
dense domain containing the cyclic vector ~o, such that 
(4.1) is satisfied.26 

Applying the foregoing theorem to the representation 
of the canonical commutation relations, we get the 
following two theorems. It should be noted that, in 
these cases, the algebra ~ is automatically represented 
by bounded operators. 

Theorem 4.2 

The necessary and sufficient condition for a func­
tional E(f), fJJl, to be represented as 

E(f)= (~o,U(f)'I'o) (4.6) 

with a cyclic normalized vector ~ 0 in a Hilbert space 
S) and with a representation of U on S) [namely, 

22 For an example, H. Araki, footnote reference 21. 
23A "function" of U~ means H=fxdP(X), P(X)E(U~)". 
241. Segal (preprint). 
2. The corresponding theorem for a complete normed algebra is 

well known. (M. Neumark, footnote reference 18, pp. 119-121, 
Sec. 6, 3, VI.) A similar proof can be given to this theorem. (For 
example, H. Araki, footnote reference 21.) Because of the absence 
of norm in the algebra ~, representing operators are not neces­
sarily bounded. 

unitary operators U (f) on S) satisfying (2.8)] is that 

n 

E(f)*=E(- f), 

E(O)=l, 

2: ciclE(fi- f;) ~O, 
•. ;=1 

(4.7) 

(4.8) 

(4.9) 

for an arbitrary integer n, an arbitrary set of complex 
numbers c,' i = 1, .. " n and an arbitrary set of elements 
fi in Dl. In order that U(f) is continuous on f relative 
to some topology in DI [for example, the continuity of 
U (t f) with respect to the real variable t], it is necessary 
and sufficient that E(f+ fo) be continuous on f for a 
fixed fo. Such a representation of U with 'I'o as a cyclic 
vector is unique up to unitary equivalence. 

For the proof, we apply theorem 4.1 takine ~=~(U). 
As the functional E(R), we use E(f) for R= U(f) and 
Eq. (4.2) for general R~~(U). Equation (4.9) corre­
sponds to (4.4), and (4.8) corresponds to (4.3) and the 
unitarity of U(f). To prove the continuity of U(f), 
suppose fn~f.If x~~(U)~o, ~n= U(fn)x,and '1'= U(f)x, 
then from the assumed continuity of E(f), we see that 
(~n,'1')~('1',~). Since l\~nl\=II~I\=llxl\, we have 
I\~n-~II ~ O. For general <I>~S), and for a given positive 
number ~, we can always find x~~(U)~o such that 
II<I>-xl\ <1/3 because of the .cyclicity. For this X and E 

we can find an integ~r N such that, for n>N, 

IIU(fn)x- U(f)xll <E/3. 
Then 

II U (f n)<I>- U (f)<I>11 < E 

for n> N. This completes the proof of the theorem. 

Theorem 4.3 

The necessary and sufficient condition that a func­
tional E(f,g), feDI, gJJ2, be represented as 

E(f,g) = (~o,U(f)V(g)~o) (4.10) 

with cyclic normalized vector ~o and with unitary 
operators U (f) and V (g) satisfying (2.8) through 
(2.10), is that 

n 

E(f,g)*=E( - f, - g)eiU.ol, 

E(O,O) = 1, 

(4.11) 

(4.12) 

2: cic/E(fi- h, gi-g;)ei(Yi.fil-i(oi.l;) ~O (4.13) 
i,i=l 

for any integer n, for any set of complex numbers C" 

and for any collection of test functions f.JJ l and g,JJ2• 

In order that U (f) and V (g) be continuous on f and g 
relative to some topologies in DI and D2, respectively, 
it is necessary and sufficient that E(f+ fo, g+go) be 
continuous on f and g separately. (The proof is similar 
to theorem 4.2.) 
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We add the following lemma which is useful for some 
of the later discussions. 

Lemma. U (f.) , i= 1· ··n for distinct f. in a cyclic 
representation of U are linearly independent if V(g) 
can be defined and if D2 separates D1• If 'l' is a cyclic 
vector relative to U, then the U (fi)'l' are also linearly 
independent. 

Suppose L CiU(fi) =0. We multiply this equation 
with V(tg) and V( -tg) from both sides and with a 
function h(t) and integrate over t. We choose g such 
that (f.,g) is distinct which is possible if D2 separates 
D1.26 We choose h(t) such that its Fourier transform 
vanishes at (f.,g) except for i=io. Then we obtain Cio=O, 
which proves the linear independence of the U(f.). 

5. INV ARlANCE UNDER TIME-REVERSAL 
AND EUCLIDEAN TRANSFORMATIONS 

The operator T defined on ~(U)'l'o through 

T L CiU(fi)'l'O= L c/U( - fi)'l'O (5.1) 

is antiunitary on ~(U)'l'o. Hence, it can be extended to 
an antiunitary operator on the whole space if 'l'o is 
cyclic relative to U. T, thus defined, has the following 
properties: 

]'2= 1, (5.2) 

T'l'o='l'o, (5.3) 

Tcp(f)T-l= cp(f); [TU(f)T-l= U( - f)]. (5.4) 

Conversely, an antiunitary operator with the properties 
(5.2) through (5.4) is unique as can be seen from the 
foregoing construction of T. Interpreting 'l'o as the 
vacuum state we see that such an operator T has the 
physical meaning of time reversal operator27 if it 
satisfies, in addition, 

When such an antiunitary operator T exists, the repre­
sentation of the canonical commutation relations is 
said to be invariant under time reversal relative to 'l'o. 
The time reversal invariance does not impose any re­
striction on E(f) but gives a restriction (5.5) on V 
which is to be defined for a given E(j). 

For a given E(f,g) of (4.10), the necessary and suf­
ficient condition for the time reversal invariance (rela­
tive to 'l' 0) is 

E(j,g)*=E( - f, g). (5.6) 

If (5.6) holds, T can be defined in a cyclic representation 

26 If D2 separates DI, then for each ji; =j; - /; there is gi; such 
that (ji;,gi;)-,eO (no summation). Then the functions 

hkZ(t)=~ (jk/,gi;)ti; 
i,/ 

are not identically zero and hence, there is a t = {ti;) such that 
hkl(t)-,eO for all kl. Then g=~ gi;tij satisfies (ji;,g)-,eO for i-,e j 
and hence (fi,g) are distinct. 

27 E. P. Wigner, Nachr. Akad. Wiss. Gotingen Math. physik. 
Kl. (1932) 546. 

ofWB by 

n n 

TL CiU(ji)V(gi)'l'o=L C/U(-fi)V(gi)'l'O. (5.7) 
i=l i=1 

Conversely if T exists then (5.6) holds because 

E(f,g)*= (T'l'o,TU(f) V (g)'lto) =E( - I, g). 

In the space of a functions of a three vector x there 
is a representation of the three-dimensional Euclidean 
group {(a,R) I a: amount of translation, R: rotation} by 
linear mappings L(a,R) defined by 

[L (a,R)j] (x) = f(R-l(X- a». (5.8) 

A representation of the canonical commutation rela­
tions is said to be invariant under Euclidean group 
relative to 'lto if there is a set of unitary operators 
U(a,R) which satisfies 

U(al,R1)U(a2,R2)= U(al+R1a2, R 1R 2), (5.9) 

U(a,R)U(f)U(a,R)-I= U(L(a,R)f), 

U(a,R)V(g)U(a,R)-I= V(L(a,R)g), 

U (a,R)'lt 0= 'l' 0 

and is continuous in (a,R). 

(5.10) 

(5.11) 

(5.12) 

If a cyclic representation of WB is invariant under 
the Euclidean group, then E(L(a,R)f+ fo, L(a,R)g+go) 
is continuous in (a,R) and 

E(f,g) = E(L(a,R)I,L(a,R)g). (5.13) 

Conversely, if E(f,g) has these properties, then U(a,R) 
defined by 

" U(a,R) L ciU(f;) V (gi)'ltO 
;=1 

n 

=L c;U(L(a,R)fi)V(L(a,R)gi)'lto (5.14) 
ic::::ll 

can be extended to a unitary operator satisfying (5.9) 
through (5.12). The continuity of U({!',R) can be 
proved as in theorem 4.2. 

The necessary and sufficient condition for the in­
variance of a cyclic representation of U under the 
Euclidean group is 

E(j)=E(L(a,R)I), (5.15) 

and the continuity of E(L(a,R)f+ fo) on (a,R). (5.11) 
serves as a restriction on V which is to be defined for a 
given E(f). 

6. UNIQUENESS OF THE VACUUM 

From now on we shall assume that E(f) [and 
E(f,g)] satisfies the Euclidean invariance requirement 
(5.15) [and (5.13)]' In this section we shall make an 
additional requirement, namely, the cluster decom-
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position property of E(j). This states that correlations «=>0 a state '1'. of the form 
do not extend over infinite distances28 .29 : 

lim[E(jo+ jx)-E(jo)E(jx)] =0, (6.1a) 
x-+O) 

lim[E(jo+ jx, go+gx)-E(jo,go)E(jx,gx)]=O, (6.1b) 
x-+O) 

where 
jx=L(Xa,l)j, gx=L(Xa,l)g, (6.2) 

jo, JED I , go, gED2 and a is an arbitrary nonzero trans­
lation vector. Equations (6.1) are a very weak form of 
the cluster decomposition property because we have 
not specified how fast the left-hand sides decrease with 
increasing X. 

In the preceding section we have seen how the 
Euclidean transformation operator U(a,R) may be 
constructed if E(j) is given. Using the assumed cluster 
decomposition property, we shall show in theorem 6.1 
that there is no other vector besides '1'0 which is in­
variant (even up to a factor) under the so constructed 
representation of the Euclidean group. 

The second problem to be considered in this section 
is the following. If a cyclic representation of U (j) is 
given [either in terms of E(j) or in some other way], 
then corresponding to each cyclic vector '1'0' in this 
space, one can define E' (j) = ('1'0', U (j)'I' 0') and if E' (f) 
also satisfies the conditions of invariance and cluster 
decomposition, then one can construct different theories 
for different E' (j) in the same given representation of 
U(f). We shall show in Theorem 6.2 that this is not the 
case, namely, there is at most one E(j) fulfilling (5.15) 
and (6.1). 

Theorem 6.1 

Given E(j) satisfying (6.1) and (5.15). Construct 
U (a,R) as in Sec. 5. Then, any state 'I' 0' invariant under 
U(a,l) up to a factor is a multiple of '1'0. The same con­
clusion holds for E(f,g) satisfying (6.2) and (5.13) 
provided that D's are such that eHf .o) has a cluster 
decomposition property.so 

We will prove it for the case of a cyclic representation 
of U. Suppose 

1I'lt 0'11 = 1. 

(6.3) 

(6.4) 

By (5.9) and the continuity of U(a,R), ~(a)= (v.,a) for 
some vector v.. By the cyclicity, there exists for a given 

28 For discussions of the relevance of the cluster decomposition 
property in field theory, see R. Haag, Phys. Rev. 112,669 (1958); 
F. Coester and R. Haag, footnote reference 10. 

29 In a relativistic field theory of particles with nonzero mass, 
the cluster decomposition property may be proved in a muw 
stronger form than (6.1) from other basic principles. See G. F. 
Dell'Antonio and P. Gulmanelli, Nuovo cimento 7, 38 (1959); 
H. Araki, Ann. Phys. (to be published). 

30 This is true if functions in D's tend to zero at infinity. 

n 

'Y.= ~ c;U(f;)'Yo 
i=l 

such that 
II'Y.-'Yo'li < E. 

(6.4) and (6.6) imply 

111'Y.1I-11 <E. 
Define 

N 

(6.5) 

(6.6) 

(6.7) 

'It.'=N-1 ~ U(Xak,l) exp[ -iX(v.,ak)]'lt. (6.8) 
k=1 

with a distinct set of vectors ak. Then by (6.3) and the 
unitarityof U(a,l), we have 

N 

~N-1 ~ IIU(Xak,l) exp[ -iX(v.,ak)]'Y.-'Yo'll 
k=1 

Hence 
111'lt/II-ll <E. 

= II'Y.-'Yo'il < E. 

(6.9) 

On the other hand, 

N " 
11'lt.'112=N-2 ~ L c/c i E[L(Xak,l)ji 

k,l=l i,i=l 

- L(Xal,l)h] exp[iX(v., al- ak)]. 

For sufficiently large X, due to (6.1) and (5.15), 

n 

11'Y.'112", N-2 L ~ c/c;E(j;)E( - h) 
k;><l ;,;=1 

N n 

Xexp[iX(v., al- ak)]+N-2 L ~ C/C;E(fi- h) 
k=1 i,;=1 

N 

= N-21 ('lto,'Y.) 12 L exp[iX(v., al- ak)]+ N-211'Y.112. 
k;><l 

Since N and X are arbitrary and 'Y. is independent of 
them, (6.7) and (6.9) together with the foregoing 
equation imply 

11- I ('It 0,'Y.) II < E, V. = O. (6.10) 

Using (6.6) we have 

11-1 ('I'o,'Yo') II <2E. 

Since E is an arbitrary positive number, we have 
I ('Yo,'Yo') 1= 1 which implies that 'Yo' is a multiple of 'Yo. 

Theorem 6.2 

Given E(f) satisfying (6.1) and (5:15). If a set of 
unitary operators U'(a,l) and a cyclic vector 'Yo' 
satisfy equations similar to (5.9), (5.10), and (5.12) in 
the cyclic representation of U, then there exists a 
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unitary operator S such that 

SU(f)S-I= U(f), 

SU(a,l)S-I= U'(a,l), 

S'Ji o='lr 0'. 

A similar theorem holds for E(f,g). 
For the proof, define 

(6.11) 

(6.12) 

(6.13) 

E'(f) = ('lro',U(f)'lro'). (6.14) 

For a given E>O, there exists a vector of the form (6.5) 
satisfying (6.6). Then E1(j) defined by 

n 

EI(f)= L C/CiE(fi- 1;+1) 
i,Fl 

will approximate E' (f) in the sense that 

IE'(f)-E1(f) / <2E. 

Since E'(f) has the property (5.15), we have 

. (6.15) 

(6.16) 

I E 1(f)-E1(L(;\a,1)1) I <4E (6.17) 

for any a and ;\. By (6.1) and (6.15) we have for suf­
.ficiently large ;\ 

IE1(L(;\a,1)1)-E(f)//'lr.// 2 / <E. (6.18) 

(6.16), (6.17), (6.18), and (6.7) imply (note that 
IE(f) I ~ 1) 

Since E is arbitrary, we have E'(f)=E(f). Hence, if 
we define S by 

n n 

S L C;U(fi)'lrO= L CiU(fi)'lro', 
i-I i.""l 

it can be extended to a unitary operator satisfying 
(6.11)-(6.13). 

We note that theorem 6.1 implies the irreducibility 
·of the set of opera tors ~ = { U (f) U ( a, 1)} in the cyclic 
representation of U. For, take any B in ~'. Biro is 
obviously transla tionally invariant and hence Biro = ;\ 'lr ° 
which implies B=;\ because of cyclicity. Therefore ~ 
is irreducible. 

7. EXISTENCE AND UNIQUENESS OF V(g) IN A 
CYCLIC REPRESENTATION OF U 

To get a representation of the canonical commutation 
relations in a given cyclic representation of U, we have 
to define V(g). To guarantee the existence of m, the 
expectation functional E(f) must satisfy a certain 
(not very stringent) condition which will be formulated 
in Sec. 10. In the present section, we shall show that if 
m exists, then it may be chosen so that it satisfies (5.5) 
and (5.11). Furthermore we demonstrate that (5.5) 
together with the commutation relations completely 
·determines all the matrix elements of 1r(g) between 

states of &(U)'lro (which lie dense in .p) so that V 
satisfying (5.5) is nearly uniquely determined by E(f). 
The determination of V is not entirely unique due to 
domain questions of 1r(g). 

If at least one representation of m exists, then we 
define a mapping hg of U" into itself by 

hg(X) = V(g)XV(g)-r, XEU". (7.1) 

Obviously hg(X)EU'= U". hg{U(f» does not depend on 
the choice of the representation of m because of (2.10). 
Since every element of U" is a strong limit of a linear 
combination of U(f), the mapping hg is independent of 
the choice of m. We note that 

(7.2) 

As we will see in Sec. 10, if V (g) exists then there 
exists a unique, positive definite self-adjoint operator 
Ag which is affiliated with U" and satisfies 

(AghIro,hg(X)AghIro) = ('lro,X'lro). (7.3) 

Furthermore Vo(g) defined by 

Vo(g)X'lro=hg(X)AghIro, XEU" (7.4) 

has an extension which is unitary and satisfies (2.9) and 
(2.10). Here we will show that Vo(g) satisfies (5.5) and 
(5.11). 

For any X in U" 

Thg (X) T-I = hg(TXT-I), (7;5) 

TXT-I=X*, (7.6) 

because these are true for X = U (f) . (Note that hq is a 
unitary transformation and hence conserves a strong 
limit.) (7.6) is true for Agt which is affiliated with U". 
Hence, 

TVo (g) T-IX'lro = Thg (X*)A ghIro= Vo(g)X'lro, XEU" 

which proves (5.5) for Vo(g). 
Next, for any X in U" 

U (a,R)hg (X) U (a,R)-I= hL(a.R)g[U(a,R)XU (a,R)-I] 
(7.7) 

because this is true for X = U (f). Furthermore 

(U (a,R)AgtU (a,R)-I'lr O,hL(a.R)g(X) 
X U(a,R)Ag!U (a,R)-I'lro) 

= (AghIro,hiu(a,R)-IXU(a,R)]AghIro)= ('lro,X'lro). 

Since U(a,R)Ag!U(a,R)-1 commute with any X in U" 
and is positive semidefinite, we have from the unique­
ness of Ag 

U(a,R)AgiU(a,R)-I=AL(a.R)gi. (7.8) 

Hence, for any X in U", 

U(a,R) Vo(g)U (a,R)-IX'lro 
= U(a,R)hg(U(a,R)-IXU(a,R»AghIro 

= Vo(L(a,R)g)X'lro, 
which proves (5.11) for Vo(g). 
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We now show the uniqueness of matrix elements of 
7r(g) between states of 21 (U)wo. The transformation 
property (5.5) is crucial. From (2.10) 

(Wo,U(f)-Tr(g)Wo) - (Wo,7r(g)U(f)wo) = - (f,g)E(f). 

On the other hand, from (5.4), (5.5), and (2.12), 

(Wo,u (f) 7r (g)wo) = (TU (f)7r(g)woTiJro) 

= - (WO,7r(g)U(f)wo). 
Therefore, 

(Wo,u(f)7r(g)Wo) = - m(f,g)E(f), (7.9) 

(U (iI)wo,7r(g) U (h)wo) = t[ (h,g)+ (h,g) ]E(h-h)· 

(7.10) 

This uniqueness does not necessarily imply the 
uniqueness of V(g) because Wo may not be in the 
domain of 7r(g), and even if it is there may be many 
different self-adjoint extensions of 7r(g). 

Suppose that there are two V(g), say Vl(g) and 
V 2(g). Then 

(7.11) 

is unitary and commutes with U(f) and T. This 
implies that W(g)EU" and 

W(g)*=TW(g)T-l= W(g), (7.12) 

where the first equality is due to (7.6). Hence, W(g) 
is idempotent 

(7.13) 

Since W(g)EU", they commute with each other. From 
(2.9) 

W(gl+g2) = W(gl)h- UlW(g2). (7.14) 

From (2.11) 
W(O)=1. (7.15) 

Conversely, for any Hermitian unitary W(g) in U" 
satisfying (7.14) and (7.15), it is easy to show that 
Vl(g)W(g) has the properties (2.9) and (2.10) for V(g). 

An obvious solution of (7.14) and (7.15) is given by 

W(g)= Woh_g(Wo) (7.16) 

where W 0 is some fixed Hermitian unitary operator in 
U". In this case and only in this case the two V(g) 
connected with the multiplier W(g) are related by a 
unitary transformation in U". 

Examples where more than one V(g) satisfying (5.5) 
and (5.11) but not connected by a unitary transfor­
mation in U" exist in a cyclic representation of U can 
be constructed.3l 

If um is irreducible for one definition of V(g), then 
there is no W(g) of the form (7.16) except 1. For, 
suppose W(g) of the form (7.16) exists, and both V(g) 
satisfy (5.11). Then 

U(a,l)W(g)U(a,l)-l= W(L(a,l)g). (7.17) 

31 Examples will be discussed in a separate paper. 

Set X=WoU(a,l)WoU(a,1)-l. XEU" and from (7.17) 
X = hL(a.l)g(X) for all g. These imply that X E(llm)'. 
Hence by irreducibility assumption X is a multiple of 
the identity operator. Since X2= 1,32 and X a-O= 1, we 
have X=1. Therefore WOE-SS' which implies W O=±1.33 

8. EXISTENCE AND UNIQUENESS 
OF HAMILTONIAN 

We will restrict our attention to the models in which 
7r is the time derivative of cp, 

[H,cp(f)]= -i7r(f).34 

In terms of U (f) this is equivalent to 

[H,U (f)]= U (f)7r(f) + (t) (f,I) U (f). 

(8.1) 

(8.2) 

In addition we assume that the cyclic vector w 0 satisfies 

Hwo=O. (8.3) 

We now show that (8.2) and (8.3) are sufficient to 
determine all matrix elements of H between states of 
21 (U)wo. Take the matrix element of (8.2) between 
U(h)wo and Wo and use .(7.10) and (8.3). The result is 

(U(h)wo,HU(f2)WO) = (t)(hJ2)E(h- h). (8.4) 

The class of models with the property (8.1) corre­
sponds formally to Hamiltonian functions of the form 

(8.5) 

where H' is a functional of cp only. Another charac­
terization of these models which avoid the use of 7r(g) is 

[U(h),[H,u(h)]]= - (h,h)U(h+ 12). (8.6) 

Equation (8.6) is equivalent to (8.2) provided that H is 
Hermitian and invariant under time reversal35 : 

H*=H, 

THT-l=H. 

(8.7) 

(8.8) 

Starting from (8.6) we derive the matrix elements of 
H in the following manner. Owing to (8.3) we have 

(wo,U (h)HU(f2)WO) + (wo,u(h)HU(h)wo) 

= - (h,h)E(h+ h)· 

On the other hand, by (8.7) and (8.8), 

(wo,u (h)HU (h)wo) = (TU (h)HU (h)wo,TiJr 0) 

= (wo,U(f2)HU(h)wo). 

From the foregoing two equations we obtain (8.4). 

32 Note that U(a,1)WoU(a,1)-1 commutes with Wo because both 
are in U". Note also that W 02=1. • 

33 We assume here the cluster decomposition property of E(j) 
and use the results of Sec. 6. 

34 We assume that D1 and D2 have sufficiently large intersection, 
so that expressions like '/r(f) and (/t,h) are meaningful for suf­
ficiently many !'s. We may assume that D 1=D2• 

36 For the derivation of (8.2) from (8.6)-(8.8), see H. Araki, 
thesis, Princeton University, 1960. 
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We now show the existence of a positive semidefinite, 
self-adjoint H satisfying (8.4). First we note that if the 
equality in (4.9) occurs only when Ci=O then the state 
Li=ln ciU(f.)'¥g vanishes only when Ci=O and hence 

m n 

(L dP(f/)'¥o, H L C,.U(fi)'¥O) 
j==1 i==l 

=t 'f cid;*(f/,ji)E(fi- f/) (8.9) 
i,i 

is a consistent definition of a Hermitian form H on 
~(U)'¥o. 

Furthermore H is positive semidefinite on ~(U)'¥o, 
namely, 

n 

('¥,H'¥)=t L ClCi (h,fi)E (fi- fj) ~O, (8.10) 
i.i 

where 
70 

'¥=L CiU(fi)'¥O. 
i=l 

To prove this we need the following lemma. 
Lemma. If two (finite dimensional) Hermitian 

matrices A and B are positive semidefinite, then the 
matrix C, whose matrix elements are 

(8.11) 

in any fixed orthonormal basis, is also positive semi­
definite. 

Since C is a restriction of the Kronecker product of 
A and B to a special subspace, it is positive semidefinite. 
In a less abstract way, A and B can be written as 

Hence 

A ij= Lk akukluk;, ak ~ 0; 

B,.j= Lk bkvki*Vk;, bk ~ O. 

L Xi*CijXj=L akbl/L UkiVliXd2~0, 
i.i k,l i 

which shows the positive semidefiniteness of C. 
We take E(fj- fi) as Aij and (fi,!;) as B,-j. A is 

positive semidefinite due to (4.9) and B is obviously 
so. Hence H is also positive semidefinite due to the 
above lemma. 

We now use the following theorem of Friedrichs.36 

Theorem 8.1 

A positive semidefinite Hermitian form {'¥1,'¥2} 
defined on a dense linear set sr in a Hilbert space S) 
can be extended by continuity to a positive semidefinite 
Hermitian form on a larger linear set srl:)sr which 
consists of elements '1' of S) such that, for some sequence 
of elements '¥n of sr, 11'1'-'1'7011 ~ 0 and {'¥n-'¥m, 

38 K. O. Friedrichs, Math. Ann. 109,465,685 (1934); ibid. 110, 
777 (1935); R. Riesz and B. Sz-Nagy, Lecons d'anidyse Fonc­
tionnelle (Akademiai Kiad6, Budapest, 1953), Chap. VIII, 
Sec. 124. 

'¥n-'¥m} ~ O. Furthermore there exists a positive 
semidefinite self-adjoint operator A on S) with its 
domain D in srI such that 

{'¥1,'lt2} = ('¥I,A'¥2) 

for any '¥IEsrl and '1'2 ED. 
Owing to this theorem, we have the following theorem. 

Theorem 8.2 

For a given cyclic representation of U, in which U (f) 
is linearly independent for distinct f, there always 
exists a positive semidefinite, self-adjoint Hamiltonian 
H with domain D contained in srI, which has an ex­
tension to a Hermitian form on srI such that the 
extended form satisfies (8.4) on ~(U)'lto, where srI is 
constructed from sr=~(U)'¥o as stated in the theorem 
8.1. D is invariant under T and U(a,R) and H satisfies 
(8.8) and 

U (a,R)HU (a,R)-1 = H. (8.12) 

For the proof of the latter half, we have only to note 
that .l'rl is invariant under T and U(a,R) and (8.8) and 
(8.12) holds on srI as an equation for the Hermitian 
form H and operators T and U(a,R) as one can easily 
verify. 

As for the uniqueness, if one assumes that the domain 
of H is contained in srI, then H is unique. Without any 
condition on the domain, the extension is not unique 
and Krein's method37 gives all the positive semidefinite 
self-adjoint extension. There can also be a self-adjoint 
extension of H which is not positive semidefinite.3s 

The Hamiltonian H has the following noteworthy 
property. Denote by Ue the collection of U(f), where 
fED I has its support in a fixed region C of x space. 
Suppose that C,. are a finite number of disjoinf regions 
and Ai, A/E~(Uei). Then states in ~(UCI)'ltO for dif­
ferent i are orthogonal to each other relative to the 
Hermitian form {'¥1,'¥2} = ('¥I,H'lt2), namely, 

(Li A .''¥o,H Lj Aj'¥o) = Li(A/'lto,HA .'1'0). (8.13) 

As a final remark, the requirement that H is "local," 
i.e., of the form 

H=t f 1r(x)2dx+ f H'(x)dx, (8.14) 

where H'(x) depends only on cp(x) and its space de­
rivatives, can be expressed by 

(8.15) 

whenever the supports of gl and g2 are disjoint. 

37 M. Krein, Rec. (Sbornik) Math. Moscow 20, 431 (1947); ibid. 
365 (1947); F. Riesz and B. Sz-Nagy, footnote reference 36, 
Sec. 125. 

38 For an example, see H. Araki, footnote reference 21, p. 57. 
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9. RELATDnSTIC INVABlANCE 

The infinitesimal generator K corresponding to an 
infinitesimal Lorentz transformation 

can be written as 
K=!MPl'Ap.+Ppal" 

Mpv=-M.". 

(9.1) 

(9.2) 

(9.3) 

pi are momentum operators, JXl=H, Mil are angular 
momentum operators, and MOi are infinitesimal 
generators for pure Lorentz transformations. Greek 
indices run from 0 to 3 and Roman indices run from 
1 to 3. The signature of the metric is (1, -1, -1, -1) 
and c = 1. As is well known, 

ators of U(a,R). We will now consider the uniqueness 
and existence of MO;. These operators have to satisfy 
(9.12), (9.16), and those equations among (9.4)-(9.6) 
which contain M!H, namely, 

i[MOi,H]=-P', (9.18) 

i[MOi,Pi]= -oijH, (9.19) 

i[MOi,Mik]= -oijMok+OikMoi, (9.20) 

i[MOi,MOi]= _Mii. (9.21) 

We will first show the uniqueness of matrix elements 
of MOi between states of ~(U)'l'o.41 From (9.12) we 
have 

[MO"U (f) J= U (f),r'(xij)+!U (f) (f,xij). (9.22) 

[P",p·] = 0, 

i[M"v,P>'] = PPg").- P'g">', 

(9.4) By (7.10) we have 

(9.5) (U(h)'l'o,MGiU(/2)'l'o)=t(h,x i/2)E(f2- h)· (9.23) 

i[Mllv,Mpa]= -gPPM'"+gl'aM,p-g·aMl'p+g,pMl'v. (9.6) 

The vacuum 'l'o is assumed to be invariant, 

(9.7) 

In a given cyclic representation of U, we define a 
four-dimensional field 1/1 by 

1/1 (h) = f dteiHt<p(h)e-iHt, (9.8) 

where h is a four-dimensional test function whose re­
striction on a spacelike hyperplane is in DI , and <p(h) 
still depends on t. We assume that 1/1 (h) is a scalar field39 

and reg) is the time derivative of 1/1 when h --l> g(x)o(t). 
Then the following commutation relations hold: 

i[Pi,<p(f)]= - <p(a'f), (9.9) 

i[H,<p(f)]=r(f), (9.10) 

i[Mii,<p(f)]= <p([xiai-xiaiJf), (9.11) 

i[MOi,<p(f)]=r(xiJ), (9.12) 

i[P',r(f)J= -r(iJ'f), (9.13) 

i[H,r(f)]=*(f), (9.14) 

i[Mii,r(j)]='lI'([xiai-xi(Ji]J), (9.15) 

i[MOi,r(f) J= *(xif) + <pC (J if) , (9.16) 

where 40 (9.14) defines * and 

[xiiJij] (x) = xiaij(x) = -xi(a/ axi)f(x). (9.17) 

In a cyclic representation of U, we have already dis­
cussed the condition for the existence and uniqueness 
of pi, Mii and H. pi and Mii are infinitesimal gener-

-This means that U(a,A).t-(h)U(a,A)-l=.p[L(a,A)h], where 
U (a,A) is a unitary representation of the inhomogeneous Lorentz 
group and [L(a,A)h](xl')=h[(A-l);o(xp-apn 

40 Note that ",(oJ/ax') = - f f(x)a",(x)/ox'dx symbolically. 

Next we consider the problem of existence neglecting 
all domain questions. We shall reduce all the conditions 
on MO! defined by (9.23) to a single equation. First, if 
(9.18) holds, then due to (9.14) and tbe Jacobi identity, 
(9.16) also holds. Conversely, if (9.16) holds, one can 
easily verify that i[MOi,H]+ pi commutes with U (j) 
and annihilates the vacuum. Hence we conclude that 
(9.18) holds at least on ~(U)'l'o. Similarly if (9.16) is 
true, (9.19)-(9.21) holds on &(U)'l'o. Of course we do 
not know whether ~(U)'l'o is in the domain of operators 
in these equations. 

Thus, assuming that the operator MO; defined by 
(9.23) exists and ~(U)'l'o is contained in the domain of 
all the relevant operators, the condition for the rela­
tivistic invariance of the theory is given either by (9.16) 
or by (9.18). 

We can further reduce this condition to a condition 
on E(f,g) or more specifically on the matrix elements of 
tbe product of two 1r(g) between states of ~(U)'l'o. 
Namely, since Hand MOi annihilate the vacuu!ll, 

(U (ft)'l' O,MOiHU (/2)'l' 0) 
= ([MOi,U(h)]'l'o,[H,U(h)}Iro). 

Using a similar equation for HMO., (9.22), (8.2), and 
(2.10), we see that (9.18) is equivalent to 

('1'0, U(h- fl) [r (xifl)'lI' (h}-r(ft)r (X i j2)]IrO) 

=i~E(h-ft+/f~) I +H (/2,xih) 
dt. ax' t_O 

x [(h,jl)- (h,/2)J+(ft,x ih)[Ch,/2)- (h,h)] 

+ (h,X'/t)[(f1,j2)- (/2,j2)]}E(j2- fl). (9.24) 

If the free field is the only relativistic quantum field 
theory with canonical commutation relation, then (9.24) 
might be useful to prove it. 

G, This is, of course, meaningful only when such matrix element 
exists. 
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10. E(f) AND QUASI-INVARIANT NONNEGATIVE 
MEASURE 

Among many ways to represent the Hilbert space 
for a single oscillator, the representation which diag­
onalizes the position variable is useful because the wave 
function enables one to visualize various situations on 
the one hand, and because a highly developed technique 
of partial differential equations is available for the 
method of solution on the other. 

An analogous representation for the case of quantum 
field theory would be one which diagonalizes the field 
rp(x). The difficulty lies in finding a manageable way 
in which the scalar product between states 

and the vacuum expectation functional 

can be defined and computed. 
A systematic study in this direction using the repre­

sentation theory of algebras has been made by Lew.8 

A heuristic discussion has been made by Coester and 
Haag.lo The reader is also referred to footnote references 
7, 9, and 24. 

In this section we shall show that E(J) is a Fourier 
transform of a nonnegative quasi-invariant measure. 
This means that E(J) can be expressed as in (10.2). 
However our measure space seems to be too large for 
practical purposes. 

Let us take an arbitrary functional E(J) of Theorem 
4.2. Then the function of t= (tl" ·tn) defined by 

n 

e(t)=E(L tdi) (10.3) 
i=l 

is continuous in t and positive in Schwartz's sense.42 
Hence by Bochner's theorem43 it is a Fourier transform 
of a non-negative measure 

e(t)= f exp[i(t,p)]d~(p). (lOA) 

Because of (4.8) 

(10.5) 

Since this measure depends on the 1's, we write the 
measure of a Borel p set A as 

42 L. Schwartz, Theorie des Distributions II (Hermann & Cie, 
Paris, 1951), p. 130. 

43 S. Bochner, Vorlesungen Uber Fouriesche integrale (Aka­
demische Verlagsgesellschaft, Leibzig, Germany, 1932); L. 
Schwartz, footnote reference 42, p. 132, theorem XVIII. 

Obviously J.I. has the following property, 

~(pfA; k" jn)=J.I.(pfA®Rm-n; k" jn), (10.6) 

~(peA; k·· jn)=J.I.(pfA L; /IL ... jnL), (10.7) 

where m~n, L is a nonsingular matrix, j.L=LiLij!; 
and 

A L= {(Li L'iPj) I pEA}. 

We now apply the following theorem of Kolmogorov.44 

Theorem 10.1 

Let T be any infinite aggregate, and the space Q be 
that of the real valued functions of tET. Let tl • •• tn be 
a finite subset of T and let A be an n-dimensional 
Borel set. The condition [WI)' .. ~(tn)JfA for t function 
H·) defines a subset of Q. Let i5=o be the class of all 
such subsets of Q. (QEi5=O.) Suppose that a set function q 
is defined on the sets of i5=o with the following property. 
For each finite fixed t set (11'" tn), q( {H, ) I [WI)' .. 
~(tn) JEA}) is a nonnegative measure of the Borel set A. 
In addition, in order that q is single-valued, q should 
satisfy 

q({H·) I [WI)' . 'Wn)]eA}) 
=q({H') I [Hh)'" Wm)JfA ®Rm-n}), (10.8) 

q({K) I [WI)" ·W,.)]fA}) 

=q({H') I [WPl)" ·Wp,.)]eA P }), (10.9) 

where m~n, Pl" ·P,. is a permutation of l"'n and 
A P is obtained from A by permutation P of coor­
dinates. Then q can be extended to a complete non­
negative measure defined on the sets of lJ(i5=o) where 
Bmo) is a Borel field generated by i5=o and lJmo) is the 
completion of Bmo). 

We introduce a Hamel basis {fa} in Dl and identify 
T with {fa}. Since a function on T is in one-to-one 
correspondence with a linear functional on D l , one can 
identify Q with the set D/ on all linear functionals on D l . 

We define q by 

q({K) I [WI)" 'Wn)]fA})=~(pfA; k" jn) (10.10) 

with ti= j.. Then due to (10.6) and (10.7), the Eqs. 
(10.8) and (10.9) are satisfied. Then we have a measure 
on the set of lJmo) which we will call ~. Suppose that 
X is an element of Q and 

n 

j=L cdi' 
i=l 

Then ei(x,f) is a measurable and integrable function and 

44 A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeits­
rechnung, Ergeb. Math. 2, No.3, 27-30 (1933). 
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Finally, we will show that the measure p. does not 
depend on the Hamel basis {fa}. For this it suffices to 
show that for any set M in ~o, p.(M) is independent of 
the Hamel basis. Suppose that 

M= {x(·) I [x (h) .. 'x(fn)]eA} 
= {x(·) I [x(f!')" 'x(fm'H,A'}, 

where {fa} and {fa'} are different Hamel bases. Since 
the only restriction on X is the linearity, by using Eq. 
(10.8) one can reduce the form of Minto 

M = {x(·) I [x (h) .. 'X(fI)]eA 1} 

= {XC-> I [x (h') .. 'x(fz')]eA 2}, 

f/=L.iLijj;, A2=AIL, m+n~l~m, n 

where L is a nonsingular matrix. Then by Eq. (10.7) 
we see that p.(M) is independent of the choice of the 
Hamel basis. 

Conversely, any E(f) of the form (10.11) satisfies 
(4.7)-(4.9). For example, 

L. c;*E(fj- j;)Ci= J I L. c;ei(x.li) 12dp.(x) ~ O. 

The continuity of E(tf+ fo) in t follows from Bochner's 
theorem.43 Thus we have the following theorem. 

Theorem 10.2 

In order that E(f) satisfies conditions of theorem 4.2, 
it is necessary and sufficient that E(f) be a Fourier 
transform of a nonnegative measure p. on the space of 
all linear functional on D1• The cyclic representation 
of 21(U) in theorem 4.2 is unitarily equivalent to the 
multiplication algebra of the functionals L.i~ln ciei(X.li) 
on the Hilbert space of all L2 functionals with respect 
to the measure p.. 

For the proof of the latter half of the theorem, we 
identify L. c,ei(x.li) with elements of 21(U)'li"o in the 
Hilbert space Sj=L2(D1',p.) of all L2 functionals with 
the inner product 

('li"1,'li"2)= J'li"l (X)*'li"2 (x)dp. (x) (10.12) 

(1 corresponds to 'li"o). Then the elements of Sj(U,'li"o) 
consist of the functional belonging to the closure of 
the set of functionals of the type L. Ciei(x,/j) with 
respect to L2 norm. This includes, in particular, the 
characteristic function of any set of belonging to ~o 
and hence, the characteristic function of any set in 
Bmo). Therefore all L2 functionals (more precisely 
their equivalence classes) are in Sj (U, 'li" 0). This completes 
the proof of the theorem. 

Next we will consider the condition on the measure 
for the existence of V (g). If Dl separates D2, then D2 
can be considered as a subset of D1'. For a subset B of 
D/ we define (B+g) = {x+ilxeB}. A measure p. is 
said to be D2-quasi-invariant if p.(B)=O implies 

p.(B+g)=O for any g in D2. We will prove the following 
theorem. 

Theorem 10.3 

A necessary and sufficient condition for the measure 
p. in order that V(g) may be defined in L2(D1',p.) is that 
p. be D2-quasi-invariant. 

For the sufficiency proof, we use the Radon Nikodym 
theorem.46 If p. is D2-quasi-invariant, then there exists 
the derivative 

(10.13) 
such that 

J F(x+g)Ag(x)dp.(x) = J F (x)dp. (x). (10.14) 

We define V(g) by 

[V(g)'li"](x)='li"(x+g)[Ag(x)]!. (10.15) 

First, by (10.14) V (g) is unitary, 

J I [V (g)'li"] (x) 12dp.(x) 

= fl'li"(x+g) I 2Ag (x)dp. (x) = JI'li"(x)12dp.(X)' 

Second, since46 

A g (x+ g')A~, (x) = A g+g' (x) 

we obtain (2.9) in the following way: 

[V(g) V (g')'li" ](x) = [V (g')'li" ](x+g)Ag(x)! 
='li"(x+g+g')[A g, (x+g)Ag(X)]l 

= [V (g+ g')'li"] (X). 
Third, (2.10) is trivially satisfied. 

For the necessity proof, we note that any operator 
in 21(U) is represented by the multiplication of 

and satisfies 

n 

R(x) = L. Ciei(x.l,) 
;=1 

[V(g)RV( -g)](x) =R(x+g). 

(10.16) 

(10.17) 

Denoting by PB the projection operator defined by 
multiplication of the characteristic function IPB(X) of 
a set B, we prove 

V (g)P B V ( - g) = P B-g. (10.18) 

If B is a periodic, finite dimensional cylinder function, 
then IPB(X) is a uniform limit of R(x) and hence we 
get (10.18) from (10.17). By taking the limit of an 
infinite period, the (10.18) for any set B in g:o holds as 
a strong limit of the (10.18) for periodic B. B(Fo) is 

45 P. Halmos, Measure Theory (D. Van Nostrand Company, 
Inc., Princeton, New Jersey, 1950), Sec. 31. 

46 P. Halmos, footnote reference 45. 
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the closure of ~o under the operations B -+ Be, 
{Bl,B2 } -+ B 1nB2, and B 1CB2 ••• CB"C" '-+UBn 
:aB. In the last operation PBn -+ PB strongly. Hence 
we see that (10.18) holds for B in B(Fo). Since PB=O 
and Jl.(B)=0 is equivalent, Jl. is D2-quasi-invariant. 

11. CONCLUDING REMARKS 

We have seen that the vacuum expectation functional 
E(f) determines essentially all the content of a theory 
in Hamiltonian formalism under the assumption that 
the Hilbert space is cyclic relative to U. Namely, it 
determines the Hilbert space and the representation of 
U(f) (theorem 4.2), the time-reversal operator T and 
a unitary representation of Euclidean group (Sec. 5), 
the vacuum state (theorem 6.1), the representation of 
V(g) (Sec. 7), the Hamiltonian (theorem 8.2), and the 
representation of Lorentz group if it exists (Sec. 9). 

The unitarity of U(f) and the positive definiteness 
of the Hilbert space give the conditions (4.7)-(4.9) on 
E(f). The invariance under Euclidean transformation 
gives (5.1S). On physical grounds28 •29 we have assumed 
the cluster decomposition property (6.1). The existence 
of V (g) gives a condition which is stated in theorem 
10.3, though this is not an explicit condition for E(f). 
The relativistic invariance gives (9.24) [alternatively 
(9.16) or (9.18)]. All these conditions are sufficient as 
well as necessary for the mentioned properties except 
that (9.24) should be supplemented by conditions con­
cerning domain questions and existence of the operator 
defined by the Hermitian form (9.23). 

We note that the assumed time reversal invariance 
is crucial for the near uniqueness of V (g) and H. 

Theorem 6.2 tells us that for a given representation 
of U or U5B the choice of E(f) (which results from the 
choice of the cyclic vector 'lto) satisfying (S.lS) and 
(6.1) is unique. Combining with theorem 8.2, we see 
that any specific representation of U and U5B which is 
cyclic relative to U is capable of describing essentially 
one Hamiltonian only. Hence in discussing any specific 
Hamiltonian the choice of the correct representation of 
canonical commutation relations is essential. 

Theorems (10.2) and (10.3) tell us that E(f) is a 
Fourier transform of a quasi-invariant measure. If one 
can find a convenient practical way to handle this 
measure and the computation of integrals such as 
(10.11) and (10.12), then this provides a powerful 
method for constructing examples of E(f) because the 
condition (4.9) which is most difficult to satisfy is 
automatically satisfied. For such an application our 
measure space seems to be too large. 

We will discuss some examples of E(f) in a separate 
paper. 
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A modified representation of the Bethe-Salpeter wave function for scalar particles interacting via a 
massless scalar field is presented and related to Salpeter's approximate wave function. A procedure for 
obtaining approximate solutions of the Bethe-Salpeter equation for arbitrary interactions is introduced. 
The method is based on a variational principle and is capable of high accuracy when used with the trial 
functions developed here. The choice of trial function is suggested by the important features of the exact 
solutions for the special case described above. The method is applied to a finite range potential which 
corresponds to the lowest order approximation to a simple field theory. The results of the calculation suggest 
that the effect of retardation is large when an interaction is transmitted by a field with mass. 

I. INTRODUCTION 

A FUNDAMENTAL field theoretic solution of the 
deuteron problem is one of the long-standing 

problems of nuclear physics. The possibility of solving 
this problem was greatly enhanced by the formulation 
of a relativistic wave equation for two-body systems 
by several authors.1.2 The usefulness of the equation 
has been demonstrated in several accurate calculations 
of energy levels for hydrogenS and for positronium.4 

The validity of the perturbation method used in these 
calculations is based on special properties of the electro­
magnetic interaction. 

The deuteron differs from the above in two respects: 

(a) The interaction is transmitted by a meson field 
and cannot be accurately approximated by an instan­
taneous interaction. Therefore the retardation effects 
associated with the relative time must be treated co­
variantly. These effects are important because the 
velocities of the nucleons are large when they are ex­
changing mesons. 

(b) The exact form of the interaction kernel is 
unknown. Moreover, even if it is assumed that the 
interaction is transmitted entirely by pions, the inter­
action kernel cannot be expanded as a rapidly converg­
ing series in the meson-nucleon coupling constant. In 
this work the influence of the retardation effects on the 
wave function and the interaction strength will be 
studied. The calculations are done with an interaction 
kernel which has the form of the lowest order approxi­
mation to a simple field theory. 

Recently, exact solutions of the Bethe-Salpeter (B-S) 
equation have been obtained for the case of two scalar 
particles interacting via a scalar massless field (scalar 

* This work was supported in part by the U. S. Atomic Energy 
Commission. 

t Submitted in December, 1957 in partial fulfillment for 
the degree of Doctor of Philosophy at Carnegie Institute of 
Technology. Present address: McMaster University, Hamilton, 
Ontario. 

1 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951). 
2 J. Schwinger, Proc. Nat!. Acad. Sci. 37, 455 (1951). 
3 E. E. Salpeter, Phys. Rev. 87, 328 (1952). 
4 R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952). 

photons) in the ladder approximation.·· 6 The method 
used is dependent on certain special properties of the 
interaction kernel and does not appear to be applicable 
to other types of interaction kernels. It is the purpose 
of this paper to introduce methods that are applicable 
to an arbitrary form of potential. Although a system of 
two bound scalar particles does not correspond to any 
system found in nature, it is felt that a thorough 
understanding of this problem will be useful for solv­
ing the spinor problem. 

The method introduced here is based on a variational 
principle. The particular variational principle that is 
practical from a computational standpoint requires a 
very judicious choice of trial function to obtain suffi­
ciently precise eigenvalues. A thorough study of the im­
portant features of the wave function is necessary to 
apply the variational principle intelligently. This is 
done by considering the exact solutions mentioned 
above. In Sec. II a new representation of the wave 
function in momentum space is presented and is related 
to the form used by Wick· and the nonrelativistic per­
turbation approach of Salpeter.3 The wave function in 
configuration space is discussed in Sec. III. In particular, 
the important features of the wave function for non­
relativistic binding energies are presented. 

In Sec. IV the accuracy of the variational principle 
which is especially suited for arbitrary interactions is 
demonstrated by means of a trial function which is 
very similar to the wave function obtained from the 
SalpeterS approach. Also, it is shown that the accuracy 
of the foregoing variational principle is strongly de­
pendent on a cancellation effect when applied to situa­
tions where the binding energy is small. This discussion 
shows how this feature of the principle can be used to 
obtain high accuracy with rather simple trial functions. 
Section V is concerned with the details and results of 
calculations for a potential which has a finite range and 
is very similar to the Yukawa interaction. 

6 G. C. Wick, Phys. Rev. 96, 1124 (1954); (hereafter referred 
to as W). 

6 R. E. Cutkosky, Phys. Rev. 96, 1135 (1954). 
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II. MOMENTUM SPACE SOLUTIONS 

In the notation of W, the B-S equation in momentum 
space for two scalar particles of equal mass7 interacting 
through a massless scalar field in the ladder approxi­
mation is 

A f d4kif;(k) 
F-tF-if;(P)=- --, 

71'2 (p_k)2 
(1) 

where p is the relative four-momentum in the center-of­
mass frame of reference and the abbreviation 

(2) 

has been introduced for convenience. Recall that 71 is 
a four-vector with a component in the P4 direction only 
and 71 is related to the binding energy (RE.) by 

hi = 1-[(B.E.)/2J<1. (3) 

It was shown in W that the s states solutions of (1) can 
be represented by 

if;(P) = f+1 dzg(z)[P+2izp·71+ 1-712J-3, (4) 
-1 

where g(z) satisfies the ordinary differential equation 

d2g >..g(z)· 
-+ 0, (5) 
dz2 (1-z2) (1-7)2+z2712) 

with the boundary conditions g(±l)=O. It should be 
pointed out that the representation of the wave func­
tion by an integral over a single parameter "z" is a 
property of the particular interaction under considera­
tion. For example, if the interaction is through a scalar 
field with mass, intergrals over two parameters are 
required. The unique property which allows a one­
parameter representation is that the functional de­
pendence on the momentum is reproduced when the 
interaction operator [rhs of (l)J is applied to a wave 
function of the form 

In the extreme nonrelativistic limit, when 712 ~ 1, 
g(z) for the ground state develops a kink at z= 0, in fact, 

g(z):::::< (1-lzl) and A=2(1-~)!/7I', (7) 

which is the nonrelativistic Balmer formula for A. On 
substituting (7) for g(z) in (4), the integration over z 
can be performed resulting in 

(8) 

where F± is defined in (2). 
Equation (8) suggests a new representation of the 

wave function 
+1 

if;(P)=[F-tF-J-1f dzf(z)[P+2izP'17+1-172J-1, (9) 
-1 

7 Natural units li=c=m= 1 are used throughout. 

which is especially appropriate in the nonrelativistic 
range. Following the method outlined in W, the condi­
tion that (9) satisfy (1) requires f to be a solution of 

d2 Aj(z) 
-[Q(z)f(z)J+--=O, 
dz2 (1-z2) 

(10) 

where Q(z) = (l-~+zV) and f(±l)=O. On comparing 
Eqs. (5) and (10) one can see that fez) = Cg(z)/Q(z) , 
where C is a function of 71 only. Substituting this ex­
pression for fin (9), the B-S wave function is 

if;(P) = [F+F_J-1f+
1 

dzg(z) 
-1 

In the extreme nonrelativistic limit, CQ-1(Z) is 
approximately o(z) and (11) reduces to (8). However, 
(11) is a more useful representation of the wave function 
than (4), since a large part of the important asymmetric 
momentum dependence is exactly accounted for in the 
[F+F_J-1 factor of (11). Moreover, for the ground-state 
solution, which is our main interest, g(z) is a slowly 
varying function in comparison to Q-1(Z). Thus, even 
when ~=0.95 (which is quite relativistic), with any 
reasonable choice for g(z), (11) gives a very accurate 
wave function. 

In the light of (11) it is interesting to examine the 
wave functions used by Salpeter3 and by Karplus and 
Klein4 in their respective work involving the electro­
magnetic interaction. The basis of their method is to 
note that essentially all of the binding is due to the 
instantaneous part of the interaction. With this in mind 
they approximate the true interaction kernel by the 
instantaneous part for which they are able to obtain a 
solution of (1). The difference between the instan­
taneous part and the true interaction kernel is treated 
by perturbation theory. The assumption of an instan­
taneous interaction is equivalent to dropping (p4-k4)2 
on the right-hand side of (1) which can then be written 

A f 1/t.(k) 
1/t.(p)=[F-tF-J-L d4k--. 

r (p-k)2 
(12) 

After Salpeter we define a three-dimensional wave 
function, 

+00 

<y(p) = f dP41/t.(P,P4). 
-00 

(13) 

Since the interaction does not depend on k4, we can 
immediately integrate the right-hand side of (12) over 
k4, which gives 

A f <y(k) 
1/t.(p)=[F-tF-J-L d3k--. 

71'2 (p-k)2 
(14) 

This means that the P4 dependence of 1/t. is given com-
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pletely by the [F-tfl_J-l factor in (14). An equation for 
'Y (p) is obtained by integrating both sides of (14) over 
P4. The result is 

A f 'Y(k) 'Y(p) = (p2+1)l(p2+1-'I]2)-I- d3k--, (15) 
271" (p-k)2 

which is identical to the Schrodinger equation in mo­
mentum space except for the extra factor (p2+ 1)-i. 
However, in the extreme nonrelativistic case, where one 
expects the above approximations to be valid, the im­
portant region of p2 is of order (1-,f)«1. Therefore, 
the (p2+ 1)-; can be neglected in a first approximation 
and then treated as a perturbation. For the ground 
state the solution of (15) is 

(16) 

To obtain 1/1. (p), substitute for 'Y in (14) which gives 

1/Is (p) = [F+F_J-l(p2+ 1_'1]2)-1. (17) 

Before comparing with the exact solution (11) It IS 
worth nothing that (1_'1]2) is 1.3X1O-li for positronium. 
For binding energies of this order of magnitude, 
CQ-I(Z) can be approximated by o(z) and (11) gives a 
wave function which is very similar to (17) except 
that the last factor (p2+P42+ 1-1/2)-1 is replaced by 
(p2+1_~)-1. At first sight this difference might appear 
significant; however, [F+F_J-l is a highly peaked func­
tion around P4=0. In fact, it is very nearly proportional 
to F(P)O(P4). This can be seen by writing 

F+F_=[(p2+N+1-'I]2)2+4'I]2NJ, (18) 

and noting that the important region of P is of order or 
less than a few times (1_'1]2). In this region [F-tfl_]-1 
decreases much more rapidly in the P4 direction than 
in the p direction. This shows that the wave function 
given by the Salpeter approximation is quite good in the 
extreme nonrelativistic range. 

III. CONFIGURATION SPACE WAVE FUNCTIONS 

The wave function in configuration space will be 
denoted by ~(x) and is related to the momentum wave 
function by the Fourier transform 

(19) 

where x= (r,x4) and p·x=p·r+p4X4. To investigate the 
solutions around the origin in configuration space we 
must consider the partial differential equation for ~(x). 
Taking the Fourier transform of (1) gives 

{[ -0+ (1_'I]2)]2_4'I]2cJ2jcJX42} ~(x) 

=AV(R)~(x), (20) 
where the potential V (R) is 

V(R)=4jR2, R= (x!,x!,)!. (2la) 

If the field transmitting the interaction has a mass /10, the 
potential is 

V(R)=4/1oR-IK1 C/JoR), (21b) 

Kl being a modified Hankel function. The singularity 
of V at the origin is given by (21a) for both cases. 
Owing to the asymmetry of the differential operator, 
the solution must be expressed as a sum of four­
dimensional spherical harmonics C n, 

(22) 

The radial functions satisfy a system of coupled fourth­
order differential equations. However, the term which 
produces the coupling is second order, so that the 
indicial equation which determines the nature of the 
solution around the origin comes from the fourth-order 
part of the operator. The equation we must analyze is 

Equation (23) is of the Fuchsian type. A general dis­
cussion is given in Ince. 8 The leading terms of the four 
independent solutions are 

Hl(R)=R2(1+b~+b~4+ ... ) (24a) 

H 2(R)= 1+·· .R2+ .. ·R21nR+··· (24b) 

H 3 (R)=lnR+·· ·R2(lnR)2 (24c) 

H 4 (R) = (lnR)2+ .. ·R2(lnR)3. (24d) 

On assuming that the function and its first derivative 
must be defined at R= 0, the solution is then a linear 
combination of H 1(R) and H2(R). It is useful to note 
that the derivative of H 1(R) and H 2(R) vanishes at 
the origin. Since this is a general result, we shall make 
our approximate functions in Sec. V satisfy this 
condition. 

To obtain more insight into the important character­
istics of nonrelativistic wave functions so that good 
choices can be made for the variational calculation it is 
useful to study the configuration space wave function 
corresponding to (4). The wave function ~(x) follows 
directly from the Fourier transform which yields 

+1 
~(X)=8-1.L dzg(z)Q-!(z)ez(:1;'~)RKl(Q!(z)R), (25) 

where K 1(y) is the modified Hankel function normalized 
according to 

K 1(y)=y-l as y~O 

with asymptotic behavior 

K 1(y)"" (7I"j2)ty-le-u for large y. 

(26a) 

(26b) 

8 E. L. Ince, Ordinary Differential Equations (Dover Publica­
tions, New York, 1950). 
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Our problem is to find the region of "z" which is most 
significant for obtaining a proper nonrelativistic wave 
function. To answer this question a criterion for an ac­
ceptable wave function must be established. Recall 
that in the nonrelativistic theory of the two-body 
problem the relative time does not enter. The wave 
function decays like exp[ - (1-'72)lrJ for all values of 
the relative time. Thus a reasonable requirement on 
the wave function obtained from the B-S equation is 
that it decays like exp[ - (1-~)lr J over a wide range 
of relative time values (i.e., for IX41 <:(1-~)-!). This 
means that it tends to zero much more slowly than 
exp[ - (1_'72)lx4J in the relative time direction. 

For the particular point which we wish to bring out 
it is best to rewrite (25) as 

+1 
X(x)=8-1il dz[g(z)Q-l(z)Je'(x.~)cp(y), (27) 

where 

cp(y) = yKI (y) and y=Q!(z)R. (28) 

The wave function X(x) can be interpreted as a sum 
of the functions ez(x'~)cp(y), indexed by the parameter z, 
with amplitudes g(Z)Q-l(Z). The advantage of writing 
the wave function in the form (27) is that each of the 
functions e'(""~)cp(y) has the value unity when R=O. 
Thus when we inquire which region of z gives the main 
con tribu tion to the wave function for R < (1- '72)-1, we 
immediately see that the functions corresponding to z 
values less than a few times (1_~)1 are most important 
because the amplitude factor g(Z)Q-l (z) is very peaked 
around z=O. This establishes the importance of the 
small values of z. However, we must investigate to see 
whether these values of z are sufficient to describe the 
wave function for large values of R [i.e., 1'> (1-'72)-lJ. 
The exponential part of the asymptotic expression of 
X(x) follows directly from (26b); 

X (x),,-, f+l dz[g(Z)Q-l(Z)] 
-1 

Xexp{ -[Qt(z)-Z?) C0s84]R}, (29) 

where cos84=X4/R. Since Qt(z) is always greater than 
(Z'7), the wave function satisfies the boundary condition 
X -t 0 as R -t ex:>. For a specified direction (COs04 const) 
the component with slowest exponential decay corre­
sponds to the value of z which makes [Ql(z)_Z'7 cos84] 
a minimum. The value of z which achieves this is 

(30) 

However, if cos84> '7, Zm as given by (30) is outside the 
interval of permissible z values and the minimum occurs 
for Zm = ± 1. The two cases can be summarized as 

follows: 

(i) 

(ii) 

I cos841 <'7; Zm1]= (1-~)1 cot04, 

Qt(Zm)-Zm'7 cos84= (1_'72)l sinO" 

X (x) "-'exp{ - (1-~)lR sin04} 
=exp{ - (1-'72)ir}. 

I cos94 I >'7; zm=±1, 

Q1(zm)-Zm'7 cos8,= 1-'71 cos041, 

X (x)'" exp{ - [1-'71 cosO, I JR}. 

(31a) 

(31b) 

(31c) 

(32a) 

(32b) 

(32c) 

For the extreme nonrelativistic limit (i.e., '7 ~ 0.995), 
(31) holds for all angles 9, except a narrow arc 
.6.04"'(1-~)i around the relative time direction, and 
(31c) satisfies the general criterion discussed above. 
Thus to produce a wave function with the proper 
asymptotic form over most of the plane, values of 
IZ1]1 <: a few times (1_'72)! must be included. On re­
calling the previous discussion for small R, we conclude 
that these values of z are sufficient to produce a wave 
function for all values of R. These conclusions can be 
corroborated by considering the wave function in mo­
mentum space. 

It is interesting to note that the asymmetry of the 
wave function (25) is given by the rather simple 
e*·~) factor. We will make use of the particular way 
the asymmetric term enters in choosing trial functions 
in Sec. V. 

In W it was mentioned that an adiabatic separation 
of the configuration space Eq. (20) was possible in the 
extreme nonrelativistic range. Actually the method 
does not give the correct form of >- vs '7 [i.e., Eq. (7) J; 
however, because of its pedagogical value the method 
will be presented. With the potential (21a) and the 
space and relative time coordinates written explicitly 
(20) becomes 

To motivate the separation of variables, let 

r= (1-~)!O and X4= (1-~)lT. (34) 

Then in terms of the new variables (33) can be written as 

4>-
----X (V,T). (35) 
(1-'72) (02+r2) 

In the nonrelativistic limit when 1]2 -t 1, the coefficient 
of (P/ iJr2 is a large number while all other coefficients 
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are of order one. The situation is analogous to the 
problem of separating the electronic and nuclear motion 
in molecules. This suggests a solution of the form 

~(!" T) = v(!')u(!', T), (36) 

where U is the solution of 

47f i)2u 4A 
----u-Hp)u. (37) 

(1-712) i)T2 (1-712) (!,2+T2) 

In molecules the nuclear motion is adiabatic with 
respect to the electronic motion; here we treat the 
spatial motion as adiabatic with respect to the relative 
time motion. 

The p dependence of Hp) follows directly from (37) 
by use of the transformation T=PY and is 

4 C(A) 
Hp)=--. 

1-v p2 
(38) 

The differential equation for u in the new variable y is 

d2u AU 
-+--=Cu, 
dy2 1+y2 

(39) 

where the 712 in the numerator of the left-hand side of 
(37) has been set equal to one. In the spirit of an adia­
batic separation, when (41) is inserted into (35) to 
obtain the differential equation for v(p), certain terms 
are neglected. The derivatives of u with respect to p 

are dropped and 

is replaced by 
[ -v?+l]. 

Then using (37) and (38), the v equation is 

4C 
---v. 
(1-v)p2 

(40) 

Although the foregoing approximations appear reason­
able and consistent, they are not correct in the region 
around the origin (i.e., R;51). This will be shown by 
solving (39) and (40) and then examining the wave 
function ~(r,t) obtained from their solutions. 

The reduction of (40) into the form of a familiar 
eigenvalue problem can be done most easily in mo­
mentum space. Let we!') be the three-dimensional 
Fourier transform of v (!'). Then in momentum space 
(40) is 

[p2+1]2w(p) =A(411-)-1 f d3kw(k)/\ p- k \, (41) 

where A=4C/(1-'12). Noting that the kernel of (41) is 
the Green's function of the Laplacian operator, the 
integral equation can be reduced to a partial differential 

equation by applying the Laplacian to both sides of 
(41). This results in 

V'p2{[p2+1]2w(p)}=-Aw(p). (42) 

Since we are concerned with the ground state of the 
B-S equation, only s states need be considered which 
reduce (42) to 

1 d2 
- -(p[p+ 1]2w(p)} +Aw(p) =0. (43) 
pdP 

To complete the determination of A the boundary condi­
tions on w(p) must be investigated. 

The boundary conditions on the function v('!') are 
the usual ones associated with the Schrodinger equa­
tion. That is, v decays exponentially for large values of 
p, and v is defined for p=O. The former condition implies 
that w is defined for p=O; therefore, 

Pw(p)=O when p=O. (44) 

The boundary condition for large values of p can be 
obtained from the integral Eq. (41) and the condition 
that CPw(p)] tends to zero for large values of p, which 
is necessary for v(p) can be defined at the origin. It then 
follows that 

{p[f+ 1 ]2W (p)} ---? const as p ---? co. (45) 

With these boundary conditions the solution of (43) is 

w(p)=[f+1]-! (46) 

corresponding to the eigenvalue A=3. The wave func­
tion v in configuration space is 

(47) 

where we have returned to the original coordinates. 
To complete the determination of the wave function 

and the eigenvalue A, Eq. (38) must be considered. It 
can be shown by a straight-forward analysis that (38) 
has two regular singular points (y= ±i), and an essen­
tial singularity at y= 00. Thus the equation cannot be 
solved in terms of well-known functions. However, it 
is easy to see that for small values of X 

(48) 

and for large values of y the function u behaves like 

u(y) ::::exp[ -C' \y\]. (49) 

On combining (48) with the relation connecting C and 
A, one obtains 

(50) 

where higher-order terms of (1-712) have been neglected. 
This is a very curious result; X has the correct functional 
dependence on '12 but the coefficient is wrong by the 
factor (!)'. The corresponding wave function is 

~(r,x4) = {rKl[ (1-712)tr ]}U(X4/r), (51) 
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where u is an even function and behaves like 

u=exp{-(£)t(1-'12)ilx41/r} for IX41>>r. (52) 

The wave function is reasonable in the region r :> I x41 
but is very poor in the region r < I x41. It is especially 
bad around the origin where the function should be very 
nearly spherically symmetric. Instead it decreases 
sharply in the X4 direction. As pointed out earlier the 
error arises from dropping the a2/ar2 term to obtain 
the v Eq. (42). This approximation, which was made to 
separate Eq. (35), is good for large values of R since 
there the asymmetric term 

dominates, but this is not the case near the origin. 
These statements can be corroborated by considering 
the momentum space wave functions of Sec. II. The 
asymmetric P4 term dominates for p2::; (1_'12); this 
corresponds to large values of R. However, for large 
values of p the wave function is spherically symmetric. 
Therefore the wave function in configuration space 
should be spherically symmetric around the origin. 

IV. VARIATIONAL METHOD 

The reduction of the B-S equation into a one­
dimensional problem is only possible for the particular 
interaction due to a scalar massless field. To investigate 
solutions for arbitrary interactions one must resort to 
other procedures. The method introduced in Sec. V is 
based on a variational principle and is applicable to 
any form of potential. 

There are several variational principles which are 
related through the variation-iteration method9 for 
solving eigenvalue problems. Their formulation is 
simple and straightforward.lo The difficulties arise in 
performing the necessary integrations with reasonable 
trial functions. Although the iterated forms can be used 
with crude trial functions, the integrals become com­
pletely out of hand with even the simplest choice for 
the B-S equation. Thus the primary concern in choosing 
the variational principle is that it gives integrals which 
can be evaluated, without excessive labor, when used 
with nontrivial trial functions. For arbitrary interac­
tions, only the orthodox (noniterated) variational 
principle satisfies this condition. The disadvantage of 
this approach is that the main emphasis is put on the 
choice of trial wave functions. In' this respect the 
analysis of wave functions in Sees. II and III will be 
very useful. 

For purposes of discussion it is most convenient to 
employ general operator notation. The B-S equation is 

ffi/t= A 'Ow, (53) 

9 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953). 

10 For numerical details see S. H. Vosko, Ph.D. thesis, Carnegie 
Institute of Technology, 1957. 

where 5' represents the operator on the left-hand side of 
(1) or (20) and '0 is the interaction operator. Since 5' 
and '0 are positive-definite and self-adjoint it follows 
that 

A= minimum { (if;,ffi/t)/ (if;,'Uif;)} (54) 

is a variational principle for A. 
To appreciate the usefulness of the variational 

principle, its accuracy can be tested for the scalar 
massless field. A basis for comparison can be established 
by solving the ordinary differential equation (5). One 
must resort to numerical methods because the equation 
has four singular points. All calculations will be done 
for '172 =0.99 which is a rather critical test since neither 
the extreme relativistic nor the extreme nonrelativistic 
approximation is valid. Direct numerical integration 
giveslO 

A = 0.0838±0.OOO1. 

It is also of interest to consider the solution of (5) 
by a variational procedure. With the simple trial 
function 

gl(Z) = (1-lzD+b(1-z2), (55) 

the minimum occurs for b=0.491 yielding a value for A 
of 0.0858 which is about 2!% too large. If the extreme 
nonrelativistic choice is made for gl (Le., b=O) the value 
obtained for A is 0.0888. A better trial function 
which eliminates the cusp around Z= 0 of the function 
(1-lzi) is 

lzl <a, 
(56) 

Izl>a. 

Minimizing with respect to "a" gives an upper bound 
of 0.08414 to A with a=O.2 which is a considerable im­
provement over gl(Z). 

To test the accuracy of (54) we shall use the extreme 
nonrelativistic wave function (8). Bya straightforward 
integration the numerator of (54) can be evaluated and 
yields 

w2[4'173(1-'I72)t]-I{sin-1'17-'17(1-'172)!}. (57) 

The denominator is more complicated and the integrals 
cannot be expressed in terms of simple functions. It 
can be expressed as 

7r2[ 4'173(1-1J2)!J-l 

x{ [11(1-'12)-! sin-l'l7+ln2(1-'I72)!] sin-~ 

f l dz tan-l Z'17 } (58) 
- 0 z(l +z) (1_'I72)i . 

In the extreme nonrelativistic limit, 1J2 --). 1, the arc sine 
terms dominate in both expressions. On taking 
sin-l'l7""'7r/2, the quotient tends to 2(1-'I72)t/7r as it 
should. The terms dropped represent relativistic correc-
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tions. To compare the variational result for 7]2=0.99 
with the exact value given in (54), the integral in (58) 
was evaluated by Gauss' method using the six-point 
formula. The final result is 0.0843, which is only 0.6% 
larger than the exact result. It is interesting to note 
that this is very much better than using the function 
g(z) = (1-1 zl)to obtain A from (5) by a variational pro­
cedure even though the wave function (8) corresponds 
to this choice for g(z). This shows that the variational 
principle expressed in terms of the B-S wave function 
is not very sensitive to the choice of g(z), and is capable 
of giving very accurate results. 

Before considering trial functions which are par­
ticularly suitable for the variational principle it is 
important to understand how the minimization is 
achieved. It will be shown that the minimization is 
strongly dependent upon a cancellation of positive and 
negative terms in the numerator of (54). How this can­
cellation comes about is not obvious since the operators 
are positive-definite. For the purposes of illustration 
we shall consider the scalar massless field which is an 
extreme example, since the interaction strength tending 
to zero with the binding energy is dependent on this 
cancellation effect. Substitution of (4) into (54) gives 

{ 

+1 +1 

A=minimum il dz il drg(z):J(z,r)g(r) / 

(59) 

where 

(60) 

1J(z,r) =71'-2 f d4p f d4k 

X[p, -z]-3[(p-k)-2][k,r]-3 (61) 

expressed in the form 

and 

respectively, where all the kernels are positive definite. 
For the extreme nonrelativistic case where ~-1»1, the 
major contributions to (63) and (64) come from the 
region Ixl <) and Iyl <1, where g(x) is essentially 
constant. Then it would appear that both quantities 
were of order (1_~)-2 and the quotient tended to a 
constant. This contradicts the previous result of 
A'" (1_7]2)!. Comparing (63) and (64) with (57) and 
(58) we see that the difficulty must be in (63). To 
reconcile (63) with the previous calculation one must 
require that 

(65) 

where the limits of integration are ±e-1. If the limits 
± 00 are used (e ------70), then the integral should vanish. 
By direct integration this can be shown to be the case. 

The diagonal matrix elements, :J(x,x), must be posi­
tive since :J is positive-definite. Therefore the off­
diagonal elements of :J(x,y) must be negative so that 
the positive contribution from the region x""y may be 
canceled. The sources of these negative matrix elements 
may be understood by examining Eq. (60). Since we 
are concerned with the ground state our considerations 
can be specialized to g(z) even. Then it is most con­
venient to work with a kernel which has this condition 
explicitly exhibited. Define 

and the abbreviation :J.(Z'S)=~ f d4p{[p, -Z]-3+[p,Z]-3}[F+F_J 

[P,z]=P+2izP'7]+1-7]2 X{[p, -r]-3+[p,r]3} (66a) 

has been used. It follows directly from these definitions which is related to :J(z,s) by 
that the kernels :J(z,s) and 1J(z,s) are symmetric and 
positive definite. Equation (59) can be regarded as a :J.(z,S)= :J(z,s)+:J(z, -r)· (66b) 
variational principle for A in terms of the functional Similarly, the interaction kernel becomes 
g(z). The 7] dependence of the kernels can be exhibited 
explicitly by the change of variables 1J.(z,S)=1J(z,S)+1J(z, -S). (67) 

z7]= X(1_7]2)!, r7]= y(1_7]2)!, (62) 

and the change of the p and k scale by (1_~)i. Then 
[P,z] becomes (1_7]2) (p2+2ixP4+1). The change in 
variables from (z,s) to (x,y) in Eq. (59) introduces a 
factor 7]-2(1-7]2) and the limits of integration become 
±e-1 where e= (1-7]2)i/7]. Collecting powers of (1_1)2), 
the numerator and the denominator of (59) can be 

By collecting the denominators of an individual 
bracketed term in (66a) , it can be seen that the inte­
grand of (66a) is positive for all values of p when (Z7])2 
is smaller than [(1_7]2)/3]. Therefore, :J.(z,r) is posi­
tive when (Z7])2 and (r7])2 are both smaller than 
[(1-~)/3]. It may be positive for other values of z 
and r but this depends on the details of the integral. 
For :J.(z,s) to be negative, at least one of the terms Z7] 
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or t"1/ must be greater than [(1-1/2)/3Ji. The matrix 
elements of '0. (z,t) are always positive. Expressions for 
ff'(z,t) and '0 (z,t) are given in the Appendix. 

The main conclusion which may be drawn from this 
discussion is that the minimum of (59) is achieved by 
a delicate cancellation due to the complicated structure 
of the kernel ff'(z,r). This effect is essential for determin­
ing eigenvalues for nonrelativistic binding energies. 

V. APPROXIMATE WAVE FUNCTIONS 

This section will be concerned with the problem of 
choosing approximate wave functions that can be used 
in the variational principle. The choice of functions 
will be guided by the criteria discussed in Sees. III 
and IV. Particular care is taken so that the cancellation 
effect described in the previous section can occur. This 
is achieved by using a linear combination of functions 
and varying the amplitude of each function so that a 
minimum is obtained. 

To illustrate the procedure consider the scalar mass­
less field. The form (4) of the exact wave functi9n 
suggests a trial wave 

Zn 

where 0:::; z" < 1 and the sum is over a finite number of 
z,,'s. Substituting this trial function in (54) gives 

(69) 

where the a(z,,) and z .. are the variational parameters. 
The ideal procedure would be to vary all parameters; 
however, the labor involved would. be prohibitive. A 
more practical procedure is to make a judicious choice 
of z" and then vary the a (z,,) to produce a minimum. 
After some experimentation the following values of z" 
were arrived at for the special case (1-1/2)=0.01: 

Zl1/ 

0.000 

z211 

0.065 

z311 

0.173 

z411 

0.300 

z511 
(70) 

0.500. 

The choice of the first two points is primarily concerned 
with the over-all shape of the wave function in accord­
ance with the discussion of Sec. III. The objective 

governing the choice of the other three points is to 
minimize the numerator of (69) by exploiting the nega­
tive values of the off-diagonal matrix elements of ff' •. It 
should be noted that large values of z"(z,,,,-,1) are not 
needed. For other values of 112 some readjustment of' 
the points would be required. 

With the z,,'s fixed the problem of determining the 
a(z,,) can be reduced to solving the matrix eigenvalue 
problem 

L ff'.(zn,t",,)a(5n)=A L 'G.(Zn,5n)a(5n), (71) 
in in 

where ff'.(Zn,t" n) and '0. (z",t .. ) are positive-definite sym­
metric matrices and a(t",,) is the eigenvector. The solu­
tion of (71) for the ground state is straightforward. 
The functional form of ff'. and '0. are given in the 
Appendix and a tabulation of the matrices for par­
ticular values of z" are given in Tables I and II. For the 
(Znl1)'S given in (70) the eigenvector is (1.0000000; 
2.5463714; 4.5260774; 1.9318722; 7.9293120) and the 
corresponding eigenvalue is 0.083920, which is only 
0.12% greater than the exact value. It is interesting to 
note that this method gives more accurate results than 
the wave function (8) in the variational principle. To 
investigate whether a value of (Zn1/) greater than 0.5 
would make an appreciable improvement, a sixth value 
of (Znl1) equal to 0.7 was added. The resulting eigenvalue 
is 0.083875, a very small improvement over the previous 
result, which shows the values of z" given in (70) are 
adequate. 

Owing to the similarity of Eqs. (4) and (68) there 
should be some connection between the values of a(Zn) 
which produce the minimum in (69), and the function 
g(z). The values of a(z,,) and the corresponding values 
of g(z) at the points z" cannot be compared directly. 
A reasonable assumption is that the sum in (68) could 
be thought of as a numerical integration of (4). Then 
a(z,,) is equal to g(z")..1z,, where ..1z" varies from 
point to point. A rough comparison can be made 
by constructing a histogram from the values of a(z,,), 
where the height of each block is equal to a (Z,.)/ ..1zn • 

The choice of ..1z" is rather arbitrary but any reasonable 
choice does not alter the histogram appreciably. The 
g(z) plotted for comparison in Fig. 1 is from the varia­
tional solution (56). The histogram is normalized such 
that its area is equal to the area under g(z). 

TABLE 1. [f.(z,\,) matrix for (1-,f)=O.Ol.a 

Z'1 "'-\''1 0.000 0.065 0.173 0.300 0.500 

0.000 0.27733333 0.096959036 -0.039726098 -0.027291486 -0.010824967 
0.065 0.096959036 0.054529575 -0.0049262454 -0.011011672 -0.0062225370 
0.173 -0.039726098 -0.0049262454 0.016494543 0.0075587743 0.0014103839 
0.300 -0.027291486 -0.011011672 0.0075587743 0.0069608986 0.0032060624 
0.500 -0.010824967 -0.0062225370 0.0014103839 0.0032060624 0.0025363315 
0.700 - 0.0050435419 -0.0033574601 0.000032635305 0.0014553906 0.0016710349 

• Note. The factor ".'/4(1 -~')' has been omitted. 
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TABLE II. 'O.(z,r) matrix for (1-,f)=0.01." 

Z'1"-r'1 0.000 0.065 

0.000 0.66666666 0.43489565 
0.065 0.43489565 0.29371344 
0.173 0.11847216 0.088466198 
0.300 0.035149843 0.028416016 
0.500 0.0094487446 0.0081631006 
0.700 0.0037577238 0.0033631595 

• Note. The factor "'/4(1 -~')' has been omitted. 

A parametric representation of the B-S wave function 
when the interaction is transmitted by a scalar field 
with mass is suggested by the analogous problem in 
nonrelativistic wave mechanics. The ground state solu­
tion of the Schrodinger equation for the Coulomb 
potential is the familiar exponential. The analog of the 
Coulomb potential for the B-S equation is (21a) and 
the corresponding wave function is (25). The similar 
feature of the two solutions to note is that their asymp­
totic behavior in configuration space is characterized 
by a single decaying exponential which is precisely the 
same as the corresponding Green's function (see 
Appendix of W). On the other hand; the solution of the 
Schrodinger equation for the Yukawa interaction 
requires a sum of exponentials with different decay 
factors. That is, the solution can be represented as 

f'" daf(a) exp[ -a(l-~)!r] (72a) 
+1 

in configuration space, or 

f'" daf(a)[p2+a2(1-172)]-2 (72b) 
+1 

in momentum space. The corresponding example for 
the B-S equation is a scalar field with mass. By analogy, 
the B-S wave function for this case may be generated 
from the known solutions for the scalar massless field by 
including a sum of various decay factors, that is, 

where w=aQ!(z)R. This corresponds to the momentum 
space wave functionll 

1/t(p) = f'" da f+1 dzg(z,a)[p,z,a]-3, (74) 
____ +1-1 

11 A similar parametrization has been used by G. Wanders 
[Phys. Rev. 104, 1782 (1956)]. Also R. E. Cutkosky and the 
author have investigated the wave function [F-tF_jlfdafdz 
Xf(z,a)[p,z,ajlj however, the integral equation obtained for 
f(tS,a) is too complicated to be useful. 

0.173 0.300 0.500 

0.11847216 0.035149843 0.0094487446 
0.088466198 0.028416016 0.0081631006 
0.035725803 0.014529605 0.0051085866 
0.014529605 0.0072270637 0.0030615355 
0.0051085866 0.0030615355 0.0015698808 
0.0023489828 0.0015690780 0.00090878084 

where the abbreviation 

[p,z,a]= (P+iz17)2+a2Q(Z) (74a) 

has been introduced for convenience. With the proper 
choice of g(z,a) Eq. (74) would be an exact solution of 
the B-S equation 

According to the procedure used in the foregoing, for 
a variational calculation the integrals over a and z 
could be replaced by finite sums, for example, 

The sum over z .. depends on the value of 172 (i.e., 
binding energy) under consideration. For ~=0.99, the 
values given in (70) are adequate. The sum over al 
should include a,= 1 to ensure agreement with the 
Green's function for large values of R; other values of 
a, could be treated as variational parameters. Sub­
stituting (76) in the variation principle would result in 
an expression very similar to (69) except the matrix 
elements would be designated by four parameters 
(z .. ,al; r .. ,{31). The determination of the a(z",a,) which 
minimize the quotient can be reduced to the familiar 
secular problem as in the previous case. Considering the 
results obtained for the scalar massless field one might 
expect to determine the interaction strength A to 

FIG. 1. Histogram for comparison of a(tS,,) and g(tS). The area under 
each block is proportional to a (Zft). 
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TABLE III. 

P PK1(P) 
Right-hand side 

of Eq. (77) 

0.2 0.955 0.964 
0.6 0.782 0.792 
1.0 0.602 0.604 
2.0 0.280 0.280 
3.0 0.120 0.126 

within 0.5% for the case (75) using a wave function of 
the form (76) with two ai's, of which one would be a 
variable parameter. Use of the wave function (76) 
presents a problem because the matrix elements of the 
potential operator cannot be evaluated in terms of 
simple functions. At best they can be represented as an 
integral over a single parameter which could be evalu­
ated numerically if a very precise solution were re­
quired. However, Eq. (92) does not warrant such 
careful treatment since it does not represent any known 
physical situation. 

The effects of a finite range potential can be obtained 
by a simpler calculation by altering the original 
potential slightly. The mode of approximation is sug~ 
gested by writing the potential (21b) in the form 

4.R-2[ (pR)K I (p,R) J, 

and noting that the function in brackets is generally 
similar to 

By direct numerical computation it can be shown that 
for P less than 5 

PKl(P)~ (1+a)-1[(1+P)e- P+a(1+2P)e-2PJ (77) 

where a=0.66746. Beyond 5 the value of the function 
is quite small and relatively unimportant. The accuracy 
of (94) is demonstrated by the sample values given in 
Table III. On using (77), the finite range potential 
which we will consider is 

U(R)=4R-2(1+a)-1 

X[(1+p,R)e-I'R+ a(1+2p,R)e-2I'R]. (78) 

Also, it is worth noting that the properties 

when P=O are preserved by the function (1+P)e-p
• 

In the spirit of the preceding approximations for 
PK1(P), a reasonable ground-state trial function is 
[compare with Eq. (73)J, 

XT(X) = L L a(Zn,al)[v'1arQ(zn)]-l 
al Zn 

where 
X {ezn("·~)+e-zn(".~)}{ (1 +w)e-W } , (79) 

w=azQi(zn)R. 

The advantage of this trial function is that the potential 
matrix elements can be easily evaluated for any poten­
tial containing exponentials such as (78). The summa­
tions over Zn and al are the same as (76) except for the 
al which is to be treated as a variational parameter. It 
should be noted that the trial function (79) is even in 
X4 since it is a ground state function. Also, the radial 
function (1+w)e'" satisfies the general condition de­
rived in Sec. III that the first derivative with respect 
to R vanish at the origin for potentials with the R-2 
singularity. The corresponding momentum space wave 
function follows from the Fourier transform of (79) 

1/IT(P)=L L 15a(zn,al)azQi(zn)2-i 
al Zn 

It is very similar to (76) except the exponent is (-~) 
instead of (-3). The evaluation of matrix elements 
with these trial functions are straightforward although 
rather complicated algebraic expressions result,1° 

Potentials with repulsive cores or phenomenological 
potentials can be expressed in terms of exponentials, and 
their effects could be readily investigated with trial 
functions similar to (79). 

The scalar massless field can be used to estimate the 
accuracy of a variational calculation with this trial 
function. If only al= 1 and Zn7J of (70) are used the 
calculation is similar to the previous variational calcu­
lation.10 The result is A=0.08768, which is fair consider­
ing the simplicity of the trial function although not 
nearly as good as using the exact type [i.e., RKI(R)J of 
function. The effect of including a variable a, is to 
lower A to 0.08574, a 2% improvement. In this case 
al = 1 and a2 is varied to produce a minimum. For each 
value of a the tenth-order secular equation is solved for 
A and a(Zn,al). This ensures that the value obtained for 
A is a minimum with respect to the ten independent 
variable parameters. The minimum occurs for a2= 1.5. 

For the finite range potential U(R) with p,=0.148 
which corresponds to the pion mass, the same set 
of calculations was performed. With a single al= 1, 
A=0.302. Introducing a second al as above, the upper 
bound on A decreased to 0.210 which illustrates the im­
portance of a second exponential. This is similar to the 
Yukawa interaction in the Schrodinger equation where 
the addition of a second exponential also makes a large 
improvement. The minimum occurs at a2= 1.7 and is 
quite sensitive to a2. Using the error in the scalar mass­
less field as a guide, one might expect that the value 
0.210 is approximately 2% too large. The interaction 
strength for a finite range potential could be determined 
more accurately if the trial function (68) was used 
instead of (80). 

Table IV illustrates the relativistic effects by com­
paring the just-mentioned results with the values 
obtained from the Schrodinger equation with the same 
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TABLE IV. 

Schrodinger equation 
Variation solution of B-S equation 

Scalar 
massless 

field 

0.0637 
0.0857 

Finite range 
potential, 
1'=0.148 

0.148 
0.210 

binding energy and the equivalent nonrelativistic 
potentials. Recall that these calculations correspond 
to '1)2=0.99. Assuming that the results for the B-S 
equation are too large by 2%, then the true relativistic 
result for the finite range potential would be 40% 
larger than the nonrelativistic result. Although the 
form of the B-S equation used here does not include the 
effects of spin, which are quite important in the deu­
teron, the results show that relativistic effects are very 
significant. If the true potential for the deuteron has a 
repulsive core, the relativistic effects are likely to be 
even larger than the preceding calculations indicate. 
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APPENDIX 

The functions ff=(zl) and 'lJ(z,S-) defined by Eqs. (60) 
and (61) may be evaluated in a straightforward 
manner. Use of Feynman formulas to combine denomi-

nators are useful. The results are 

ff=(ZJ)=[_7r_
2 

-](x+y)-4 
4(1-fJ2)3 

{ 

l-xy 1-xy 
X --+--+4-6(1-fJ2)(1-xy) 

1+x2 1+y2 

- (x+y )-1[ tan-1x+ tan-1y][ (1 +x2) 

+(1+y2)+4(1-xy)- (1-fJ2) 

X{2(1+x2)(1+y2)+4(1-Xy)2}]}, (AI) 

w here x and yare defined by 

X(1-fJ2)!=Z1/ and y(1-fJ2)1= S-fJ. 

The function (A1) appears to have a singularity when 
z= -S-i however, it can be shown that the function is 
defined and has the form 

ff=(z, -z)=[ 7r
2 

] 2 
4(1-fJ2)3 15(1 +X2)3 

X {6(1+x2)-1+4(1-fJ2)-5}. (A2) 

For the scalar massless field the potential kernel is 

(x+y) (1-xy) }. 

(1 +x2) (1 +y2) 
(A3) 

Again the singularity for z= -S- is only apparent, in fact 
(A3) simplifies to 

'lJ (z, - z) = [ 7r
2 

]3-1(1 +X2)-3. (A4) 
4(1-fJ2)3 

Note that in Tables I and II the common factor 
7r2/4(1-~)3 has been omitted. 
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Relationship between Systems of Impenetrable Bosons and Fermions 
in One Dimension*t 
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A rigorous one-one correspondence is established between one-dimensional systems of bosons and of 
spinless fermions. This correspondence holds irrespective of the nature of the interparticle interactions, 
subject only to the restriction that the interaction have an impenetrable core. It is shown that the Bose 
and Fermi eigenfunctions are related by y,B =if;F A, where A (Xl' •. Xn) is + 1 or -1 according as the order 
pq .. 'r, when the particle coordinates Xj are arranged in the order xp<x.<··· <Xr, is an even or an odd 
permutation of 1· . ·n. The energy spectra of the two systems are identical, as are all configurational prob­
ability distributions, but the momentum distributions are quite different. The general theory is illustrated 
by application to the special case of impenetrable point particles; the one-one correspondence between 
bosons with this particular interaction and completely noninteracting fermions leads to a rigorous solution 
of this many-boson problem. 

1. INTRODUCTION 

I N the following section a very simple and general 
relationship will be established between one-di­

mensional systems of impenetrable bosons and fermions. 
We shall find that the restrictions both to one dimension 
and to interactions with a completely impenetrable 
core are essential. Nevertheless, there are at least two 
motivations for studying such a relationship. First, one 
is enabled to obtain a rigorous solution of the many­
boson problem for the case of impenetrable point 
particles in a one-dimensional periodic box, and this 
solution may serve as a useful testing ground for various 
approximation methods. Second, the relationship for 
the case of more general interactions may permit com­
parison of approximation methods designed for Fermi 
systems with those designed for Bose systems. 

The general theory of the Bose-Fermi correspondence 
is developed in Sec. 2, and is illustrated in Sec. 3 by 
application to impenetrable point particles in a periodic 
box, for which the correspondence permits one to obtain 
a rigorous solution of the many-boson problem by 
relating it to the trivial problem of a one-dimensional 
free Fermi gas. 

2. PROOF OF THE CORRESPONDENCE 

The condition that the interparticle interaction have 
an "impenetrable core" is most conveniently repre­
sented by the following subsidiary condition on the 
allowable wave functions y;: 

Y;(XI" ·xn)=O if lXi-xLi ~a, 1~j<1~n, (1) 

where Xl' •• x" are the coordinates of the n particles 
comprising the system, and a is the hard-core diameter. 
Then the Schrodinger equation is 

(T+V)y;=Ey;, (2) 

* Supported in part by U. S. Air Force Office of Scientific 
Research. 

t An abbreviated account of this work was given by M. 
Girardeau, Bull. Am. Phys. Soc. Ser. II 5, 8 (1960). 

t Now at Boeing Scientific Research Laboratories, Seattle, 
Washington. 

where V includes all interactions except the hard cores' 
and is otherwise completely unrestricted. Consider first 
any Fermi wave function tP satisfying (2); y;F is anti­
symmetric in the particle coordinates. We define a 
"unit antisymmetric function" A as follows: 

A (Xl' • ·n .. ) = II sgn(xj-xt), (3) 
J>t 

where sgn(x) is the algebraic sign of X; an equivalent 
definition is that A is + 1 or -1 according as the 
order pq .. ''', when the Xj are arranged in the order 
xp<xq<'" <Xr, is an even or an odd permutation of 
1· .. n. Then the product 

(4) 

is symmetric in the particle coordinates, and hence 
describes a Bose system provided that the necessary 
regularity conditions are satisfied. To see that they are, 
we note that A has discontinuities only at the surfaces 
Xj=Xt, where two particles come together. But y;B is 
continuous even at these surfaces, since y;F vanishes 
there as a result of the Fermi statistics; indeed, it 
vanishes throughout the region of the hard cores as a 
result of the subsidiary condition (1). The surfaces 
Xj= Xt divide the n-dimensional configuration space 
into n! disjoint regions, in each of which A is constant, 
equal to either + 1 or -1. As a result, y;B satisfies the 
Schrodinger equation (2) throughout the allowed 
portion of configuration space [alII Xj-xt! >a(jrfl)], 
by virtue of the fact that tP does; for the same 
reason, y;B ~ 0 as Ix i- xd ~ a from above. In the 
remainder of configuration space (where hard cores 
overlap), tP and y;B are defined by (1). Finally, y;B will 
satisfy boundary conditions of enclosure in a box if 
tP does, and in the case of oddl total number of particles 

I For the case of odd n, the function A (Xl' .• x .. ) defined by (3) 
remains well defined if the Xj are interpreted modulo L,in which 
case A satisfies periodic boundary conditions with periodicity 
length L. On the other hand, for the case of even n the substitution 
Xj -+ xj±L changes the sign of A. Hence our general theorem on 
the one-one correspondence is only valid for a system with 
periodic boundary conditions if n is odd. There are no restrictions 
on n for boundary conditions of enclosure in a box. 

516 
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n, it will satisfy periodic boundary conditions if!/tF does. 
Upon putting together all the pieces of this rather 
lengthy verbal proof, we conclude that !/tB is a solution 
of the SchrOdinger equation (1) satisfying Bose statis­
tics and belonging to the same energy as if;F, and satis­
fying the same boundary and regularity conditions; 
for the case of periodic boundary conditions, we must 
add the proviso that the total number of particles be 
odd. The above proof cannot be generalized to systems 
of particles moving in three dimensions (or any number 
of dimensions greater than one) because there does not 
exist any generalization of the unit antisymmetric 
function A [Eq. (3)J to the case where the particle 
coordinates x j are vectors rather than scalars; this is 
because the "surfaces" Xj= Xl then fail to divide the 
configuration space into disjoint regions (they are 
"lines" rather than "surfaces"); in two or more di­
mensions one can hold all particles but one fixed and 
move the remaining particle about throughout the box 
containing the system without encountering any of 
the fixed particles, but in one dimension the motion of 
one particle is blocked by the others. Even for one­
dimensional systems, our proof is limited to systems 
for which the interparticle interaction has a completely 
impenetrable core, since only then does the Bose wave 
function defined by (4) have a continuous gradient at 
the surfaces Xj=XI [both the wave function and its 
gradient vanish there because of (1)]. In the degenerate 
case where the impenetrable core has shrunk to a point 
(a=O), !/tB has discontinuous gradient at the surfaces 
Xj= Xl, but this is merely a reflection of the singular 
point interaction; such a discontinuous gradient at 
Xj=XI is permitted only if there is an impenetrable 
point core. 

The relationship (4) establishes a one-one correspond­
ence between all the Fermi and all the Bose energy 
eigenfunctions; since A 2 = 1, this correspondence pre­
serves all scalar products. Not only are the energy 
spectra of the Bose and Fermi systems identical,2 but 
also all configurational probability distributions, since 
these involve only the square of the wave function. On 
the other hand, the momentum distributions will in 
general be quite different, since they involve the mo­
mentum wave function, and the result of taking the 
Fourier transform depends on the relative sign of the 
wave function in various regions of configuration space. 
One expects the single-particle momentum distribution 
of the Bose system to reflect a tendency toward Bose­
Einstein condensation, while that of the Fermi system 
should be dominated by the effects of the exclusion 
principle. We shall find that this is indeed the case for 
the simple example discussed in Sec. 2. 

We conclude our discussion of the general corre­
spondence by noting that the relationship (4) simplifies 
for the case of the ground state. We note first that for 

2 It is an obvious corollary that also all eqUilibrium thermo­
dynamic properties of the two systems are identical. 

a one-dimensional system the Fermi ground state !/toF 

vanishes only for those configurations Xl" . Xn where 
the hard cores overlap [Eq. (1)J; this follows from (4) 
and the well-known fact that the Bose ground state 
!/toB is positive (aside from an arbitrary constant phase 
factor) except where it is required to vanish by boundary 
conditions or infinite repulsive interactions.s It follows 
that !/toF has constant sign4 throughout each of the n! 
regions into which the configuration space is divided 
by the surfaces Xj= Xl. Thus, since !/toF is antisymmetric, 
it has the same sign (aside from a constant phase 
factor) as the unit antisymmetric function A (Xl' .. Xn) 
throughout the whole configuration space. As a result, 
the product !/toF A reduces merely to the absolute value 
of !/toF, and (4) reduces to 

(5) 

3. IMPENETRABLE POINT PARTICLES·· 

We consider in this section the simplest possible inter­
action with an impenetrable core, namely the case 
when the core has shrunk to a point, and there is no 
other interaction. Then the subsidiary condition (1) 
reduces to 

!/t(XI' "xn)=O if Xj=XZ, 1~j<l~n. (6) 

We seek the Bose eigenfunctions !/tB and energy eigen­
values E of the Schrodinger equation 

n h,2 a2if;B 
H!/tB=T!/tB= L ----=E!/tB (7) 

j~l 2m axl 

subject to the subsidiary condition (6)5b and to periodic 
boundary conditions with period L. 

It is well known that for a system of spinless fermions, 
point interactions are equivalent to no interaction at 
all, since the Fermi wave functions automatically vanish 
when two particles come together. Thus the Fermi 
energy eigenfunctions !/tF satisfying the subsidiary 
condition (6) are just the eigenfunctions of a free Fermi 
gas; the Bose eigenfunctions!/tB satisfying (6) and (7) are 
then given in terms of the free Fermi gas eigenfunctions 
if;F by our general theorem (4). 

The ground state !/toF of the free Fermi gas is a Slater 
determinant of n free-particle states eikx ; the allowed 
values of k determined by the periodic boundary condi­
tions are kp =27rp/L with p any integer. We shall 
assume that n, the total number of particles, is 
odd; then the ground state is nondegenerate and is 
obtained by choosing the values of p lying within the 

3 For a proof see O. Penrose and L. Onsager, Phys. Rev. 104,576 
(1956), Sec. 5. 

4 We assume that the ground state is nondegenerate, so that "'oF 
can be chosen to be real. 

• (a) Note added in proof. This model was treated some time ago 
in an unpublished work by J. K. Percus and G. J. Yevick (private 
communication from Professor Yevick) j (b) ",B is not required to 
satisfy the Schrodinger equation on the surfaces Xi~XI, where it 
vanishes and suffers discontinuities in gradient (but not in value) 
as a result of the infinite repulsive forces. 
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Fermi "sphere" -Hn-1)::::;p::::;!Cn-1). By factoring 
ei(n-l) ""ilL out of the jth row of the Slater determinant, 
one can write this ground state in the form 

1/IoF(Xl' . ·x.,,) 

=C exp[ -i(n-1)-1I-L-1 Li Xi] 

where 
Zi= expi21rL-IXi 

and the normalization factor C is 

C= (n!)-tL-tnii<n-l). 

(8) 

(9) 

(10) 

pressions (12) and (13) are exact for all odd values of 
n~ 3, but are not valid for even nl,7b; however, one 
expects all extensive properties of the system to be 
independent of whether n is odd or even in the limit 
n~ 00. 

According to Sec. 2, all configurational probability 
distributions of our system of impenetrable point bosons 
are the same as those of the free Fermi gas, 8 which are 
well known. In particular, the pair correlation function, 

L L 

D(x)=vi ... i dXa" ·dxn l1/loB(O,X,Xa·· 'Xn ) 12, 

(14) 

The phase factor in (10) is chosen to make 1/IoF real. The is given by 
determinant in (8) is of a type familiar to mathema-

r 
sin (1rpx) 12 

D(x)=l- ; (15) 
ticians; its value6 is just the product of the !n(n-1) 
differences (Zi-ZI), j>l. Thus 

1/IoF =C exp[ -i(n-1)1rL-l Li x;] 

xII [exp(i21rL-1xi)-exp(i21rL-Ix1)]. (11) 
»1 

According to (5), the ground state 1/IoB of the system 
of impenetrable point bosons is given in terms of the 
Fermi ground state (11) by 

1/IoB = l1/IoF 1= (n!)-tL-1n 

xIII exp(i21rL-Ixj)-exp(i21rL-1xI) I 
3>1 

= (n!)-lL-1n21n (n-l) II I sin[1rL-l(xj-xl)] I. (12) 
J>I 

The structure of this wave function is very simple. If 
we vary the position of one particle, keeping all the 
others fixed, then the wave function is positive and 
smoothly varying everywhere except at the position 
of each of the other particles, where it vanishes and has 
a cusp as a result of the singular repulsive interaction. 
According to our general results in Sec. 2, the ground 
state energy is the same as that of 1/IoF , i.e., that of the 
free Fermi gas 

1i2 ten-I) (21rP)2 _ (1rlip)2 
Eo=- L - =t(n-n 1) __ , 

m p~l L m 
(13) 

where p=n/L, the particle number density.78 The ex-

6 A. C. Aitken, Determinants and Matrices (Oliver and Boyd, 
Ltd., Edinburgh, 1951), 7th ed., p. 112. 

7 (a) Note added in proof. It is possible, by a simple change of 
variables, to extend the results for the ground state of the im­
penetrable point Bose gas so as to obtain the exact solution for 
the ground state of a gas of hard-sphere bosons with diameter 
a>O enclosed in a one-dimensional periodic box. The resultant 
expression for the ground-state energy, 

Eo = !{n-n-1)m-1( (1rhp)/ (l-pa»)2, 

differs only by a "surface" term from a result obtained previously 
for a Boltzmann system of one-dimensional hard spheres enclosed 
in a box [see R. J. Rubin, J. Chern. Phys. 23, 1183 (1955) for 
other references]. This agreement is to be expected, since the 
ground state of a Boltzmann system is identical with that of the 

n sin(1rL-1x) 

for particle separation x«L one can use the asymptotic 
expression 

[ 
Sin(1rPX)]2 

D(x) "" 1- , x«L. (16) 
1rPX 

D(x) rises from zero for zero particle separation to 
unity for particle separation much larger than p-l. 

What is more interesting is the single-particle mo­
mentum distribution, which is quite different from that 
of the Fermi gas and should show how the Bose­
Einstein condensation is affected by the "impenetrable 
point" interparticle interaction. However, we have not 
succeeded in calculating the exact momentum distri­
bution; the difficulties one encounters in such an evalu­
ation are similar to those encountered in the evaluation 
of the configurational integral in the classical statistical 
mechanics of interacting particles. An approximate 
expression for the momentum distribution, obtained by 
considering only the part of 1/IoB representing excitation 
of pairs of particles to equal and opposite nonzero 
momenta, leads to the conclusion that the interaction 
"smears" the condensation; the number condensed at 
the origin of k space is not proportional to n, but 
rather to n/lnn, and a large number of other allowed 
momentum sites near the origin have an occupation of 
the same order of magnitude. The derivation and details 
are given in the Appendix; it is hoped that this approxi­
mate result is at least qualitatively correct. 

In conclusion, we consider the low-lying excited states 
of our Bose system. For simplicity, we limit ourselves 

corresponding Bose system. (b) Our previous statement [Bull. 
Am. Phys. Soc. Ser. II, 5, 8 (1960)] that the ground state is "slightly 
more complicated" for even n was somewhat overoptimistic; the 
fact of the matter is that we have not been able to find it at all 
for the case of even n. 

8 It is amusing that there exists a soluble one-dimensional 
problem in the classical statistical mechanics of interacting 
particles in which all configurational probability distributions are 
the same as those of the free Fermi gas, hence the same as those 
of our interacting Bose system; the interparticle interaction in 
this classical problem is, of course, different from our point inter­
action. See C. W. Ufford and E. P. Wigner, Phys. Rev. 61, 524 
(1942). 
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to the one-phonon states, i.e., the states related by (4) 
to those states of the free Fermi gas in which only one 
particle is excited above the Fermi sea. The allowed 
momenta of these states are9 hkj= 27rhjL-1, where j is 
any integer except zero. We shall restrict ourselves to 
those states iftl with j>O, since those with j<O can 
be obtained from the relationship ift-/1= (iftjB)*. It is 
easily shown with the aid of (4) and the well-known 
expressions for the eigenstates of the free Fermi gas that 

(17) 

where C and the Zj are given by (9) and (10). The pre­
ceding determinant differs from the determinant in (8) 
only by the factor1o h j defined as the sum of the 

products of the Zl taken j at a time and with repetition 
permitted, i.e., 

.. 
hj = I: Z81·· ·Z8j. 

Sl" 'Sf =1 
(Sl~S2~'" ~Si) 

On taking account of (4) and (8), one finds 

iftjB=iftoBhj. 

(18) 

(19) 

For the smallest possible phonon momentum, namely, 
k1=27r/L, this reduces to the Feynman form 

(20) 

but the excited states of higher momentum have a more 
complicated structure. 

The energy of the state iftkB isll clearly EO+Ek, where 
Eo is the ground-state energy (13) and 

Ek= (h2/2m)[(k+kF)2-k~J= (h2/m)k(kF+!k); (21) 

ftk, is the Fermi momentum, so kF= (n-l}1I-L-1• Hence, 
apart from a term of order n-1, 

(22) 

9 It follows from (4) that, for the case of periodic boundary 
conditions, the momentum of the state 1/IB is the same as that of 
1/7. Since P5~i (h/i)ajaxi is the total linear momentum operator, 
one has 

PI/IB= (P,p')A+,p'PA. 

But it follows from the definition of A [Eq. (3) ff.] that the func­
tion P A vanishes except on the planes Xi = Xl, where ,p' vanishes. 
Hence if P,p'=hk,p', then 

PI/IB= (P,p')A =hklf;FA =h¥B, 
Q.E.D. 

10 A. C. Aitken, footnote reference 6, p. 116, prob. 2. 
11 Here we are labeling the state by its phonon wave number 

k rather than by the integer j, which is related to k by k=21f-j/L. 

This spectrum has a phonon character at low k, 

Ek=hck, k«27rp (23) 
with 

c=7rhp/m; (24) 

the one-dimensional Fermi gas is anomalous in having 
such a phonon spectrum, rather than an effective-mass 
type spectrum as is the case in two or three dimensions. 
The physical interpretation of this phonon spectrum is, 
however, quite different in the Bose and Fermi cases. 
The phonon character of the one-dimensional Fermi-gas 
spectrum results solely from statistics, whereas that of 
the Bose gas arises from the repulsive interparticle in­
teractions. The interpretation of the low excitations as 
ph()nons is verified by the fact that the sound velocity 
(24) obtained from the low-k behavior of the excitation 
spectrum agrees with that obtained on thermodynamic 
grounds from the expression for the compressibility of 
the ground state. The pressure p when the system is in 
the ground state is 

p= - (i:JEo/i:JL) = (p2jn)(i:JEoji:Jp). (25) 

On substituting from (13), one finds 

p=rh2p3/3m (26) 

aside from a term of order n-1• Then, since mp is the 
mass density, the sound velocity c is given by 

c= (m-1i:Jp/fJp)1=7rhpjm, 

which agrees with (24). 

4. DISCUSSION 

(27) 

It has been shown that for one-dimensional systems 
of interacting particles for which the interaction has an 
impenetrable core, there exists a very simple and 
hitherto unsuspected one-one correspondence between 
the energy eigenfunctions satisfying Bose-Einstein 
statistics and those satisfying Fermi-Dirac statistics. 
The form of this correspondence is such that not only 
are the energy spectra of the Bose and Fermi systems 
identical, but also all configurational probability dis­
tributions; the salient differences between the Bose and 
Fermi systems are revealed in their qualitatively 
different momentum distributions. The one-one Bose­
Fermi correspondence was used to obtain a rigorous 
solution of the many-boson problem of impenetrable 
point particles in a one-dimensional periodic box; 
aside from its intrinsic interest in view of the rarity of 
exact solutions of many-body problems, this solution 
may also be useful as a testing ground for approxi­
mation methods in many-body theory. 

APPENDIX: PAIR APPROXIMATION TO 
THE MOMENTUM DISTRIBUTION 

We are interested in calculating the single-particle 
momentum distribution function nk of the ground state 
iftoB [Eq. (12)J of the system of impenetrable point 
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bosons. nk is defined as the mean number of particles 
with momentum hk and is therefore given by 

where cf>oB is the momentum wave function and k2· .. kn 

are summed over all wave numbers consistent with the 
periodic boundary conditions. cf>oB is the Fourier trans­
form of !/loB: 

cf>oB(kl · .. kn) 

All attempts at a direct evaluation of nk with the aid of 
(12), (AI), and (A2) have failed. Using (4) and the 
faltung theorem for Fourier transforms, one can relate 
cf>oB to the momentum wave function of the free Fermi 
gas and the Fourier transform of A (Xl· .. xn ), but this 
approach does not appear to be fruitful. 

Since it is well known that many calculations in 
many-body theory are more simply and elegantly per­
formed if one works in terms of a quantized-field repre­
sentation rather than the Schrodinger representation, 
it is suggested that we employ such a representation in 
calculating the momentum distribution function nk. 
If ak and Gkt are, respectively, the annihilation and 
creation operators for Bose particles in the single­
particle momentum eigenstate L-!eikx, then Nk=Gktak 
is the occupation-number operator for this single­
particle state, and nk is just the expectation value 

(A3) 

where I !/loB) is the state vector whose Schrodinger wave 
function is !/IoB(XI·· ·Xn).12 In order to obtain an ex­
pression for the ground state vector I !/loB) in terms of 
some operator (a function of the ak and akt) acting on 

12 Those familiar with Siegert's work on field operators for 
bosons with impenetrable cores [A. J. F. Siegert, Phys. Rev. 116, 
1057 (1959)] may raise the objection that the free-particle 
annihilation and creation operators ak and a" t cannot be used in 
treating particles with hard cores. Such an objection is based on 
a misinterpretation of the significance of Eq. (A4) of Siegert's 
paper: 

1/1 (x)1/I (x') =I/It (x)I/It (x') =0, I x-x'i ::: a, 

where I/I(x) and I/It(x), respectively, annihilate and create a boson 
at point x. If this equation were a necessary property of the Bose 
field operators for particles with hard cores of diameter a, then 
the objection would be justified. However, Siegert's Eq. (A4) is 
a sufficient, but not a necessary, condition for the vanishing of the 
SchrOdinger wave function when hard cores overlap. All that is 
necessary is the much weaker condition 

1/1 (x)l/I(x') 1)=0, Ix-x'i :::a, 
where I) is any state vector describing particles with impenetrable 
cores of diameter a (for the case discussed in this Appendix, 
a=O). It is more convenient for our purposes to retain field 
operators I/I(x), I/It(x) satisfying the usual Bose commutation 
rules, and hence to interpret the above equation as a subsidiary 
condition on allowable state vectors I ); this subsidiary condition is 
merely a transcription of (1) into the language of quantized fields. 

the unperturbed ground state vector,13 we first rewrite 
!/loB [Eq. (12)J in an exponential form: 

=C'ITlsin[1rL-I(x;-xz)JI 
J>l 

where C' is a normalization constant and L;z' is a sum 
with j,el, rather than with j>l. On introducing the 
Fourier decomposition 

! In I sin[1rL-l(x;-xz)J 1= - Lk Akeik(x;-xll, (AS) 

where 
L 

Ak= _!L-I! In sin(1rL-Ix)e-ikxdx, (A6) 
o 

one finds 

!/loB (Xl· .. Xn) =C' exp[ - L;z' Lk Akeik(xj-Xz)]. (A7) 

In the Schrodinger representation, the particle density 
operator p(x) is given by 

P(X)=LjO(X-Xj), (A8) 

where 0 is a periodic Dirac delta function, i.e., its 
arguments are to be interpreted modulo L. The Fourier 
components of the density are 

L 

Pk = i p(x)e-ikxdx= Li e-ikx;. (A9) 

Equation (A7) can be rewritten in terms of the Pk: 

(AlO) 

To transform (AlO) to the quantized-field representa­
tion, we first rewrite it in the form 

(All) 

where C" = C' exp (n Lk Ak)L!n and the Pk are to be 
interpreted as operators which reduce merely to multi­
plicative functions in the Schrodinger representation. 
The factor L-in inserted on the right side of (All) is the 
Schrodinger wave function of the unperturbed system, 
i.e., the system in which the bosons are completely free 
so that the subsidiary condition (6) is not imposed. 
Upon transforming to the quantized-field representa­
tion, one therefore finds 

(A12) 

where I n) is the state vector representing the un­
perturbed ground state 

(A 13) 

with 10) the vacuum state. In the quantized-field repre-

13 I am indebted to Professor E. P. Gross for su~gesting the 
following method of finding the ground state vector Il/IoB ). 
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sentation, the operators Pk are given by 

L 

Pk= Lk'k" ak,tak" f (L-ie-ik'x)e-ikx(L-leik"x)dx 
o 

(A14) 

Equations (A3) and (A12)-(A14) furnish an ex­
pression for nk which is alternative to (Al), but, un­
fortunately, no more amenable to exact evaluation; 
the difficulty can be traced to the fact that the argument 
of the exponential operator in (AI2) is quartic in the ak 
and ak t , whereas one only knows how to evaluate 
expectation values in states of the form eS I n) if S is 
quadratic (corresponding to a linear canonical transfor­
mation of the annihilation and creation operators). We 
are therefore forced to an approximate evaluation of 
(A3) based on an approximation which renders S 
quadratic. 

In his pioneering work on the many-boson problem,14 
Bogolubov linearized the Heisenberg equations of 
motion by treating ao and aot as c numbers. The basic 
physical reasoning involved is that the expectation 
value of No=aotao will be very large if any tendency 
to Bose-Einstein condensation survives the effects of 
the interparticle interaction; on the other hand, 
[ao,aot]= 1. Hence the commutator of ao and aot is 
much smaller than their product, so that their replace­
ment by c numbers seems heuristically justified. Bogo­
lubov made the additional approximation of dropping 
those cubic and quartic terms that remained in the 
Hamiltonian after replacement of ao and aot by c 
numbers. We shall employ similar approximations in 
evaluating (A3). 

It follows from (AI4) that 

(AIS) 

But the Pk all commute (as can be proved from the Bose 
commutation relations for the ak, ak t) and In) is an 
eigenstate of N belonging to eigenvalue n (the total 
number of particles). Upon separating out the term 
with k=O in (AI2), one accordingly finds 

IlfoB)= GilleS In), (A16) 

where Gill is a normalization constant and 

where the SUbscript "p" implies "pair approximation." 
The c number no is to be interpreted as the mean 
number of particles with momentum zero. To be 
consistent, we must also make the replacement aot ---t not 
in the unperturbed state In) [Eq. (A 13) ]; the pair 
approximation to the ground state vector (Al6) is 
therefore 

(A19) 

where D is a normalization constant and 10) is the 
vacuum state. Because of the replacements ao ---t not, 
aot ---t nol, the total number of particles is no longer 
conserved [llfoB p) is not an eigenstate of N, Eq. (A1S)], 
but we can impose the requirement that the mean total 
number of particles be n: 

no+ Lkr'o <lfoB piNk IlfoB p) = n. (A20) 

The state (A19) is not yet in a form in which expecta­
tion values can be readily evaluated, since the operator 
eSp is not unitary; indeed, it is hermitian. We shall 
therefore find an equivalent unitary operator by in­
vestigating the relationship between ak 1lfoB p) and 
a_kt1lfoBp) (it is obvious from the pair structure of 
1lfoB p) that these two states are closely related). Since 
Sp is hermitian, the operator e-sp is well-defined, and so 

akeSp 1 0)= eSp(e-SpakeSp) 10), 

a_kteSp I 0)= eSp(e-Spa_kfeSp) 10). 
(A2l) 

We define the similarity (not unitary) transformsl • 

ak(e)=e-ESpakeESp, a_kt(e) = e-Espa_kteESp. (A22) 

These can be evaluated by a differential-equation 
technique. The "Heisenberg equations of motion" are 

dak(e)/ de= [ak (e) ,Sp] = - 2noAk[ak(e)+a-k t(e)], 

da_kt(e)/ de= [a_k t(e),Sp] (A23) 

= 2noAk[ak(e)+a_kf(e)]. 

Adding these two equations, one finds that the deriva­
tive of [ak(e)+a_kt(e)] vanishes, and hence that 

ak(e)+a_kt(e)=ak+a_kt (A24) 

since ak(O)=ak and a_kf(O)=a_kt. Differentiating the 
first Eq. (A23) once more and using (A24), one finds 

S= - Lkr'o Lk'k" Akak'+ktak"_ktak,ak"; (A17) and hence 
(A2S) 

(A26) 
in obtaining (AI6) and (AI7) use has also been made 
of the Bose commutation relations in order to throw 
the product of annihilation and creation operators into 
normal order atataa. Replacing ao and aot in (A17) by 
the c number not and dropping terms cubic and quartic 
in the ak, akt with k~O, one obtains the approximate 
expression 

Sp= -no Lkr'o Ak (aka_k+ak fa_kt+2Nk), (AIS) 
----

14 N. N. Bogolubov, J. Phys. (U.S.S.R.) 11,23 (1947). 

The coefficients Ak and Bk can be evaluated from the 
initial conditions 

ak(O)=Ak=ak, 

(dak/de)E=o=Bk= -2noAk(ak+a_k f); 
(A27) 

the second Eq. (A23) has been used in obtaining the 
second Eq. (A27). It follows from (A22), (A26) , and 
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(A27) that 

e-s"akesp=a,,(l) = (1-2noAk)a"-2noAka_,,t, (A28) 

and then from (A24) that 

e-spa_"tesp=a_kt(l) = 2noAkak+ (1+2noAk)a_k t. (A29) 

By (A21), (A28), and (A29) one then finds, using the 
fact that akIO)=O, 

a~spi 0)= - 2noAkesp/L"t 10), 

a_ k teSp 1 0)= (1 +2noAk)e8p/Lkt 1 0). 

Let us define 

where 

Then it follows from (A19) and (A30) that 

(A30) 

(A31) 

(A32) 

hl1foBp)=O. (A33) 

Furthermore, it follows from (A31) and the Bose com­
mutation relations for the ak and ak t that 

i.e., that the operators ~" and ~"t are also Bose annihila­
tion and creation operators for certain "elementary 
excitations" which can be thought of as phonons; 
(A33) states that the ground state is the state of no 
phonons. The canonical transformation (A31) is of 
the Bogolubov14 type, although the function epk is of 
quite a different form from his. 

We can now use (A31) and (A33) to find a unitary 
operator U such that 

(A3S) 

Indeed, since the transformation (A31) is canonical, 
one can define a unitary operator U by the requirement 

h= UakU-I= (1-epk2)-t(ak+epka_kt). (A36) 

Then by (A3S) and (A36), 

hl1foBp)= (UakU-I)UIO)= UakIO)=O, (A37) 

so that (A33) is satisfied. Since 1 1foB p) is uniquely 
determined up to normalization by the requirement 
(A33) for all k(~O), and the state (A3S) is normalized, 
we conclude that the expression (A3S), with U deter­
mined by (A36), is indeed correct. The explicit form 
of U is not difficult to determinel6 ; it is given by 

U=exp[t L""'o (aka_k-akta_kt) tanh-1epk]. (A38) 

It is now straightforward to evaluate the approxi­
mate momentum distribution function 

nk= (1foB piNk I 1foB p) 
=(01 U-WkUIO), k~O. (A39) 

16 M. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959) 
Appendix A. ' 

One sees from (A38) that U-I can be obtained from U 
by replacing epk by -epk; hence by (A36) 

(A40) 
Thus 

U-WkU= (U-1aktU)(U-1akU) 
= (1-epk2)-I(t/>,,2+Nk+epkW_ k 

-epkaka_k-epkakta_kt), (A41) 

and by (A39) and (A32) 

nk=epk2/(1-epk2)=4no2Ak2/(1+2noA,,), k~O. (A42) 

The integrals (A6) for the Ak are readily evaluated by 
contour integration when one takes into account the 
fact that k is an integral multiple of 27r / L; the result is 

Ao=t In2; Ak=7r/2Llkl, k~O. (A43) 
Thus 

nk=rno2/Llkl (Llkl+7rno), k~O. (A44) 

To determine no, the number of particles condensed at 
the origin of momentum space, we use (A20): 

(A4S) 

Since we are only interested in results valid asymp­
totically as n ---+ 00, we can replace the summation by 
an integration 

L" .. o ---+ !:'(J:'" dk+j-2 .. IL dk), (A46) 
27r 2r/L _'" 

the interval (- 27r/ L, 27r/ L) being excluded because the 
smallest allowed value of 1 k 1 ~O is 211/ L. Thus, since 
n_k=n", (A4S) becomes 

(A47) 

On inserting (A44) and performing the resultant ele­
men tray integration, one finds 

no[1+ln(l+tno)J=n. (A48) 

For large no, this reduces to 

no=n/lnno. (A49) 

This transcendental equation can be solved for no by 
iteration. The first approximation, obtained by replac­
ing no by n on the right-hand side of (A49), is 

no=n/lnn. (ASO) 

A better approximation, obtained by inserting (ASO) 
in the right side of (A49), is 

no=n/(lnn-In Inn). (AS1) 

Equation (AS1) shows that (ASO) is adequate for very 
large n; thus (A44) becomes 

nk=(7rp/lnn)2[lkl(lkl+7rp/lnn)]-t, k~O (AS2) 

where p=n/L. 
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The expressions (ASO) and (ASl) show that the inter­
particle interaction "smears" the Bose-Einstein con­
densation17 : the number of particles condensed at k=O 
is not proportional to n, but rather to n/lnn, and a 
large number of other allowed momentum sites near 
the origin have occupations of the same order of magni­
tude, since for small k (AS2) reduces to 

nk=n/(2 Jjl Inn), 0< 1 kl == (211"1 jl/L)«1I"p/lnn, (AS3) 

where j=±l, ±2, .... In spite of this "smearing" 
effect of the interaction, the condensation is still 
complete in a certain generalized sense. We can define 
the condensed fraction J as the fraction of the total 
number of particles having momenta which are in­
finitesimal compared to any macroscopic momentum: 

J==lim lim(n-1 L: nk); (AS4) 
,-->0 ,,--+co Ikl<,p 

in cases where the condensation takes place only into 

17 The fact that no is not proportional to n is connected with the 
fact that the ground-state wave function (12) possesses long-range 
order in view of the very slow rate of change of the factors 
sin[1I'L-1(x;-xl)]; see O. Penrose and L. Onsager, footnote 
reference 3. This long-range order does not show up in the pair 
correlation function (15), or indeed those of any finite order; one 
has to go to the many-body correlation functions to see it. 

k=O, this reduces to the usual definition 

J= lim (no/n:). 
,,--+co 

Then by (AS2) 

[ 1 l] J= (1I"p)2}im lim -- L 
e--+O ,,--+co n(lnn)2 Ikl<,p 1 k 1 (I k 1 +1I"p/lnn) 

[ 
1 f'P dk 1 =1I"P lim lim --

e--+O ,,-- (lnn)2 27rIL k(k+1I"p/lnn) 

{ 
1 [ (En) (En n) =lim lim - In - -In -+--

,-->0 ,,--+CO Inn 211" 211" 2 Inn 

+ In (l +_n_)] } = liml = 1. (ASS) 
2 Inn ,--+0 

Thus the Bose-Einstein condensation is complete in the 
generalized sense (AS4). This is because nk [Eq. 
(AS2) ] falls off quite rapidly with increasing k, being 
'" (11"/ E lnn)2 for 1 k 1 "'EP j nk falls essentially to zero in a 
distance of order p/lnn. This behavior is in marked 
contrast to that of the momentum distribution function 
of the free Fermi gas, which is equal to unity for 
1 k 1 < 1I"P and vanishes for 1 k 1 > 1I"p. 
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It is proved that two analytic functions of several complex variables, having the same boundary values 
when the imaginary parts of the variables tend to zero inside two arbitrary, but fixed, open cones, possess 
a common analytic continuation in a certain open set. This is a generalization of the "edge-of-the-wedge" 
theorem, a proof of which is obtained in passing. 

I N the study of the Wightman functions and Green 
functions, or in dispersion theory, the problem 

frequently arises of deciding whether certain conditions 
imposed on the boundary values of various analytic 
functions are equivalent to requirements involving only 
domains of analyticity. A very useful tool for dealing 
with such situations is the "edge-of-the-wedge" theoreml 

which may be stated as follows: Let n be an open set 
in Cn, containing a nonempty real environment D.2 Let 
ft(z) and h(z) be two functions of Z= (Zl," ',z,,) ana­
lytic in (D+iCI)nn and (D+iC2)nn, respectively, 
where C1 and C2 are two real open cones in Rn. Further­
more, assume that ft and /2 have equal boundary 
values (in the sense of distributions) at the real points 
of D. Then the "edge-of-the-wedge" theorem asserts 
that, if C1 = -C2, or, equivalently, if C1n (-C2) is a 
nonempty open cone in Rn, ft and /2 possess a common 
analytic continuation in some complex neighborhood 
of D. 

It is natural to ask what happens if we abandon the 
hypothesis that C1n(-C2)¢.0. 

Typical examples of this situation are provided by 
the requirements imposed by local commutativity on 
the Wightman functions, or the "two-term identities" 
satisfied by the various boundary values of the p-space 
analytic function (Green function).3 The answer to this 

* Visiting Fellow of the National Academy of Sciences of the 
United States, on leave from C.N.R.S., France. 

1 The "edge-of-the-wedge" theorem was discovered by H. 
Bremmermann, R. Oehme, and J. G. Taylor [Phys. Rev. 109, 
2178( 1958)J. See also J. G. Taylor, Ann. Phys. 5, No.4, 391 
(1958). A new and elegant method for the proof of this theorem 
was given by F. J. Dyson [Phys. Rev. 110, 579 (1958)]. This 
method was perfected and made valid for distribution-boundary 
values by L. Garding and A. Beurling (to be published). In the 
case of functions of one complex variable, continuous on the 
boundary, the theorem was proved by P. Painleve [Ann. Fac. 
Toulouse, 2, 26 (1888)]. -

2 By a real environment, we mean any set of the form {z=x+iy: 
y=O and xEn, where n is an open set in R". The usual notations 
R" and C" are used in this paper to denote the n-dimensional 
vector spaces on the real and on the complex numbers, respec­
tively. 

3 For general considerations on Wightman functions, Green 
functions, etc., see, in particular A. S. Wightman, contribution to 
the Colloque sur les Problemes Matlrematiques de la Theorie 
Quantique des Champs (Lille, 1957), and also Nuovo cimento 
Suppl. 14, 192 (1959) j O. Steinmann, thesis, Zurich, 1959; 
D. Ruelle, thesis, Brussels, 1959; and references given there. The 
various boundary values of the p-space analytic function have 
been systematically studied by O. Steinmann, D. Ruelle, N. 
Burgoyne, H. Araki, etc.; see for instance, H. Araki and N. 
Burgoyne, Nuovo cimento (to be published). 

question is suggested by the convex-tube theorem, and 
by the edge-of-the-wedge theorem itself. The purpose 
of this paper is to prove that if CI and C2 are two arbi­
trary real (nonempty) open cones, ft and h possess a 
common analytic continuation in an open set of the 
form 

{x+iy: xED, yE convex closure of 1;,,n(CIUC2)}, 

where 1;", is a nonempty open sphere in R" defined by: 
o ~ y12+ ... +y,,2 <p",. 

The proof of this theorem will be first carried out in 
the case when the common boundary value is a con­
tinuous function. The main tool is a straightforward 
generalization of the continuity theorem as it was 
applied by Jost to the proof of the convex tube theorem 
(the latter proof is reproduced in D. Ruelle's thesis).3 
The extension to distribution-boundary values is based 
on the method of regularization (used by Garding and 
Beurling in the case of the edge-of-the-wedge theorem).3 

I. SPECIAL CASE FOR TWO COMPLEX VARIABLES 

Let CI and C2 be the two real open cones in R" defined 
by 

CI = {(YI,y2): o <tOYI <Y2< (to+T)YI} , 

C2= {(YI,y2): 0< -tOYI <Y2< - (to+T)YI}, 

where 0 < to, 0 < T. Let C I and C 2 be the closures of C I 
and C2• 

Let ft(Zt,Z2) and h(Zlh) be two functions of 

z= (ZI,Z2)= (xI+iYI, x2+iY2), 

possessing the following properties: 
(1) fa (a= 1,2) is defined and continuous in the region 

Ra(P)={Z: IZII ~pV2, IZ21 ~pV2, (YI,y2)ECa}. 

(2) fa is analytic and has bounded first derivatives in 
the region Ra(P) 

Ra(P)={Z: IZII <pV2, IZ21 <pV2, (YI,Y2)ECa}, 

(3) The boundary values of ft, /2 for YI=Y2=0 and 
I zll ~ pV2, I z21 ~ pV2, are the same. 

Then there exists a function fez) analytic in the 
region R(p) : 

R(p)= {(ZI,Z2): IXII <p/4, IX21 <p/4, IYII <p/4, 
IY21 <p/4,·toIYll <Y2«tO+T)P/4}, 

524 
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'" /<-'-t:-t ____ _ ... _' 0 

FIG. 1. Points in the WI plane satisfying U2=1'2, Y2=tYl. 

c2ntinuo!ls in R(p).!. and c2inciding with /I and /2 in 
RI(p)nR(p) and Rz(p)nR(p), respectively. Further­
more, j satisfies the inequality 

max If(z) I ~ max max If ,,(z') I. (1) 
zER(p) a=1,2 z'ERa(P) 

Proof 

Consider the following analytic change of variables: 

{
Wl=Ul+i'V1=Zl {Zl=Wl 

W2=U2+i'V2= - 2iaZ2+W12 Zz= - (ij2a)(wIZ-w2) 

where a is a real, strictly positive constant. 
If we hold W2 fixed, with U2=-yz>Oj and look for the 

points satisfying 

Y2>0, Yl=SYZ (s real), 

which, for s;;eO, may be rewritten YZ=tYl, Y2~0, we find 

('VI-at)Z-uI2- (a2t2--y2) =0. 

If we require that I WI I and I W2! be sufficiently small, 
and that a2t2--y2>0, the corresponding points in the 
WI plane are on an arc of hyperbola ending at the points 

Ul=±-Y, 'Vl=O, 

and passing through the point 

UI=O, 'Vl=at-[a2t2_-y2]t for t>O, 
or 

Ul=O, 'VI=at+[a2t2--y2Jl for t<O 

(see Fig. 1). 
For t>to, O<-y<ato, the function at-[a2t2--y2]1 is a 

monotonically decreasing function of t. Therefore, for 
sufficiently small values of I WI! and ! W2!, with 
O<U2=-y2 <a2to2, the points satisfying Yz> to! Yl! fill 
the region limited by the two areas of hyperbola cor-

responding to t= ±to. The intersection of the region 
(Yl,yz)ECl with the analytic manifold wz=constant is 
represented (in the WI plane) by the crescent-shaped 
area between the arcs corresponding to t= to and 
t= to+r. Similarly the region yEC2 is represented by the 
points between the two arcs corresponding to t= -to 
and t= - (to+r). Let r' and r" be positive real numbers 
with 0<r'<7"<7. We denote r I , rt', r z', r 2, the arcs 
corresponding to t=[0+7', t=to+r", t=-(to+7"), 
t= - (to+7'), respectively, with the following orien­
tation:. r l ' and r 2 in the direction of increasing UI; r 1 

and rz' in the direction of decreasing U1. (See Fig. 2.) 
The contours r 1, r 1', r 2, rz' depend on Rew2=U2. 

We call B(uz) Crespo B'(uz)] the open set between r 1 

and rz (resp. between rt' and r 2'), and B(uz), B'(U2) 
the closures of these sets. 

Clearly r l '(U2) and rl(U2} can be parametrized in 
the form 

rl'(UZ): wI=~(eiB;u2), 0~0~1I", 

r 2'(U2): wI=~(eiB;u2}, 1I"~0~27r, 

where ~(eiBj uz) has the following properties: 
(i) It is a continuous function in eiB and W2, boundedly 

differentiable in (} for (};;eK7r (K=O, ±1, ±2, ... ), and 
(ii) For all 0, it has a derivative in U2 possessing the 

property (i). 
Consider the function defined, for WI outside oj 

B'(uz) by 

where A (W1,WZ) = f1(z1,z2), ]2 (Wl,WZ) = fz(zl,zz). If we 
consider that, along rt' and r z', ~ is equal to the function 
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~(ei8; W2) defined earlier, this can be rewritten in U2 and V2, given by 

I(WI,W2) is a continuous function of WI, W2, when 
I w21 is sufficiently small, wIER' (U2), and U2 ~ 0, and 
vanishes for U2=0, because hand /2 are continuous 
and, for U2 ~ ° the length of the contour of integration 
tends to zero while the integrand stays bounded. 

We shall ~ow prove that, for I w21 sufficiently small, 
U2>0, wIEEB'(U2), the function I(WI,W2) is analytic. In 
that region, I is continuous in WI and W2, and obviously 
analytic in WI, so that it is sufficient to prove the 
analyticity in W2.4 

Let us denote 

Since the contours lie inside the analyticity domain of 
hand 12, respectively, I.(WI,W2) has partial derivatives 

(a.l (t.+ "t')<i 

J771 R (4l; tt) 

J??'l (R (r) n N (1.» 

FIG. 3. Imaginary parts of R(P)nN(-'1) and R(4~) for 4~<p. 

• See, for instance, S. Bochner and T. Martin, Se'Deral Complex 
Variables (Princeton University Press, Princeton, New Jersey, 
1948), p. 32. 

Here we have put 1fa(Wt,r,W2)=[ja(r,W2)]/(r-WI) 
(a= 1, 2), and used the fact that the contours lie inside 
analyticity regions of 1fI and 1f2. The expressions ob­
tained have limits to which they tend uniformly (and 
absolutely) when E~'O and IW21 is sufficiently small, 
U2>0, and wIEER'(U2). Therefore these limits are the 
derivatives of I(WI,W2) with respect to U2 and V2. 
Moreover, using the analyticity of h, /2, we find 

When E ~ 0, this expression tends to zero by virtue 
of the continuity of the functions involved, and because 
h(ZIh) and h(ZI,Z2) are equal at real points. Therefore 
I(WI,W2) is analytic in W2 and, consequently, in both WI 
and W2. Since it tends continuously to ° when U2 ~ ° 
[while WI is only restricted by the condition WI EEE' (U2) ], 
I(WI,W2) vanishes for all values of WI and W2 such that 
IW21 is sufficiently small, U2>0, and wlEEE'(U2).6 

By the same method one can prove that the function 

1 L ]I{(,W2) 
J(WI,W2)=- dr' 

211"i r, Cu.) r' - WI 
1 i ]2 (r',W2) +- dr' 

211"i r.(u.) r' -WI 
• IfJ(z) is a function of z= (ZJ,Z2)= (xl+iYh x2+iY2) , continuous 

for IZl-a.j <'1/, IZ21 <'1/, Y2~O, analytic for Y2>O in that region, 
and vanishes for Y2=O, than it vanishes identically. This can be 
seen by applying Schwarz's reflection principle to J(flh,Z2) as an 
analytic function of Z2 for fixed Zl. 
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is analytic whenever I w21 is sufficiently small, and WI 
is not on the contour r lUr2 [but, for WI inside B(U2), 
the argument used to show that 1 vanishes does not 
apply to J since, in this case, when we let the contour 
of integration shrink to a point while keeping WI inside 
B(U2), the integrand does not stay bounded]. Now, if 
WI is between r l (U2) and r l'(U2), we have, by applying 
Cauchy's formula, 

Jl (Wl,W2) = I (WI,W2) + J (Wi,W2) = J (WI,W2) ' 

and if WI is between r 2(U2) and r 2'(U2) we have again 

J2(WI,W2) =I(Wl,W2)+J(WI,W2) =J(WI,W2). 

Thus J(Wl,W2) provides an analytic continuation of fl 
and h to the points such that I w21 is sufficiently small 
and wIEB(U2). 

To complete the proof of our statement, we examine 
more closely the new points of analyticity just obtained. 
They include all points such that 

(1) Rew2='Y2,O<'Y<a(tO+T), 
(2) wIEB(U2), and all the points (WI',W2) such that 

wI'EB(U2), satisfy I zd <pY2, I z21 <pY2. 

By choosing a=p/(to+T) if to+7 ~ 1, or a=p if 
to+7 ~ 1, it is not difficult to verify that the new points 
of analyticity include all those for which 

p p p 
jXlj<-, IX2j<-, jYlj<-, 

4-~ 4-~ 4-~ 

{ 
P P(tO+T)} 

(to+T)IYll <Y2<min -,---
4-~ 4-E 

for some ~>O. By adding points of Rl(p) and R2(p), one 
obtains, in particular, the points of R(p). The inequality 
(1) follows immediately from the maximum principle 
and from the method of construction of f. The con­
tinuity of fez) =J(WI,W2) in R(p) needs be proved only 
for real points of R(p) [at other points it is implied 
by the continuity ofh andf2 in Rl(p) or R2(p) or by the 
analyticity of f]. For this purpose, consider the inter­
section of R(p) with the open set 

N('I'/)={z: Ixd <'1'/, IZ2\ <'1/, IYll <'1/, IY2\ <'I'/}. 

If we denote ~=max[l, (1/tO+T)J and choose 'I/<p/4~, 
we have 

(see Fig. 3). 
If we assume that 'I/<p/4~,fl andh still satisfy the 

hypothesis of (I) if we replace p by 4~'I/, and so do 
h-h(O) and h-f2(O). On applying the inequality 
(1) we find 

max If(z)- h(O) I 
zER(p)n N(f/) 

< max max I fa(z)- h(O) I. 
a= 1, 2 z'ER.,(4~) 

Since h(z) and h(z) are continuous in Rl(p) and R2(p) 
and equal to h(O) for z=O, and since 

Ra(4~'I/)=Ra(p)n{z: Izd <4~'l/Y1, IZ2.1 <4~'l/Y1}, 

this implies that fez) is continuous and equal to h(O) 
for z=o. The continuity off at other real points of R(p) 
can be proved by translating the origin to any such 
point. 

II. GENERALIZATION TO MORE THAN TWO 
VARIABLES IN A SPECIAL CASE 

We shall denote Z= (Zl,· .. ,z,..) a vector in C"', n> 2, 
and x= (Xl,· .. ,x,..), y= (YI,· .. ,Y .. ) its real and imaginary 
parts. 

Lemma 1 

Let C1 be the real open cone in Rn defined by 

{ 
O<tOYl <Y2< (to+T)YI 

O~ \Ykl <aY2 for k=3, ... , n, 

where to>O, T>O, and O<a<i. 
Let C 2 be the real open cone defined by 

{ 
0< - tOYI <Y2< - (to+T )YI 

O~ IYkl <aY2 for k==3, ... n. 

Let h(z) and h(z) be two functions satisfying the fol­
lowing conditions: 

(1) fa(z) is defined and continuous in the region 

R,,(p)={z: IZil ~pY1(j=l, ···,n) and YEC,,} 
(a= 1,2). 

(2) f,,(z) is analytic and has bounded first deriva­
tives in the open region 

R,,(p)={z: Iz;1 <pY2(j=l, ... , n) and yECa} 
(a= 1,2). 

(3) The boundary values of hand h for y=O, 
IZil <pY2, are equal. 

Then, there exists a function fez), analytic in the 
region R(p) 

R(p)= IXil <-(j=1, ... , n); tOIYll <Y2< (to+T)-; { 

p p 

4 4 

which coincides with hand h in Rl(p) and R 2(p), re­
spectively. f is continuous at the real points of R(p) 
and satisfies the inequality 

max If(z) 1 < max max If .. (z') I. (1') 
zE/l(p) a= 1,2 z'ER.,(p) 
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This lemma is an intuitively obvious generalization 
of the result of Sec. I. A straightforward, but tedious 
proof is given in the Appendix. An alternative approach, 
kindly suggested to me by Professor H. Rossi, can be 
briefly sketched as follows: let y'EC1 and y"EC2 be 
sufficiently close to the origin. By a suitable linear 
real change of coordinates we can bring the points iy' 
and iy" to have coordinates (iYl', iy/, 0·· ·0) and 
(-iy/, iY2', O· . ,0) and, using the result obtained for 
two complex variables, find an analytic continuation of 
hand h in the variables Zl, Z2 along the straight line 
joining these two points. Moreover it is possible to find 
a complex open neighborhood N of this line in the 
variables Zl, Zll, and a polycylinder P in the variables 
Za, '" z" such that, for any fixed values of Z2, ••• z" in 
P, there exists a function CP(Zl,Z2,Za" • z,,) continuing h 
andh analytically in Zl, Z2 in N. 

Given the analyticity of cp= h or cp= f2 in the 
neighborhood of the "ends" of the "cylinder" NXP, 
it is then possible to deduce the analyticity of cp in 
NXP by a slight generalization of a theorem of Rossi. 6 

We remark that IrnR(p) is the convex closure of the 
intersection of Cl UC2 with the cube !Yi! < (p/4) 
(j= 1, ... , n). Therefore if we denote '2(r) the open 
sphere defined in Rn by 

n 

L xl ~r2t 
;=1 

R(p) contains in particular the set S(p) 

S(p) = { z: XE'2(~), YE'2(~), and yEconvex 

closure of '2(~)n(C1UC2)}' 

This permits the following generalization. 

Lemma 2 

Let Cl and Cz be two arbitrary open cones in R", 
n ~ 2, and Ct, C2 their closures. Let hand h be two 
functions of Z= (Zl,' .. ,z,,) with the following properties. 

(1) fa(z) is defined and continous for 

IIzlIz=i:lziI2::S2np2 and yECa (0:=1,2). 
;=1 

(2) fa(z) is analytic and has bounded first derivatives 
in the region Ra(P) (0:= 1, 2): 

Ra(P)={Z: IIz/l 2<2np2, yEC,,}. 

(3) The values of h(z) and h(z) for Z real and 
IIzl/!::S 2npZ are equal. Then, there exists a function fez) 
analytic in the region S(p), 

S(p)={z: xE'2(p/4), yEK(p)}, 

6 H. Rossi, thesis, MIT, 1959. 

and coinciding with hand h in their domains of de­
finition. Here K(p) is the convex closure of 

'2 (p/4)n (Clue2). 

Moreover, f satisfies the following inequality: 

max !f(z)! < max max 11 .. (20')1. (I") 
zES a= 1,2 z'Ell,.(P) 

Remark. Cl and C2 may overlap. Each of them may be 
disconnected. 

Proof 

This lemma is proved by decomposing C1 and C2 

into pairs of sufficiently thin open cones, to which the 
analysis of I and II may be applied after a suitable 
real linear orthogonal change of coordinates has been 
performed. Such a transformation leaves invariant 
'2(p/4) and the operation of taking the convex closure. 
It is easy to see that one thus obtains all the points of S 
except the real points in the case where OEK(p). At 
all points Z obtained, 

I fez) 1 < max max I fa (Z') I (2) 
a= 1,2 z'Ella.(P) 

by virtue of 1 and 1'. The necessary and sufficient con­
dition for K(p) to contain 0 is that ClUC! contain 
simultaneously an open cone r and the opposite cone, 
-r. In that case '2(p/4)nr is an open set containing 
an open sphere w with radius Xp, (O<X<i), and 
'2 (p/4)n ( -r) contains -w, so that K(p) contains the 
open sphere '2 (Xp) ; we know that f is defined and 
analytic in the set S' (p) : 

S'(P) = {z: xE'2(p/4), yEK(p), y~O}, 

where it satisfies (2). If e<Xp and if N(e) is the open 
set: N(e)={z: xE'2(e), yE~(f)}, we have 

N(e)nS'(p)={z: XE'2(f), yE'2(E), y¢O}CS'(E/X). 

Now the functions fr and h still satisfy the hypotheses 
of the lemma if we replace p by E/X. As a consequence 
we have 

max I 1(z) I::S max max If., (z') I· 
zEN(E)O S'(P) a=1,2 z'Ella(E/X) 

The same theory can be applied toh-h(O),h-fr(O), 
andf-fr(O) so that 

max If(z)-fr(O) I < max max 
zEN(E)US'(p) a=1,2 z!Ell,.(E/X) 

X J1a(z')-fr(O) I, 
and since 

and fa is continuous in Ra(P), this shows that f is con­
tinuous at the origin. The continuity at the other real 
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points of S(p) can be proved by carrying the origin at 
any of these points. It follows that f is analytic at the 
real points of S(p). This can be seen by applying the 
Painleve theorem in each variable when all the others 
have fixed real values, and by using the fact that a 
function, continuous in n complex variables, and ana­
lytic in each of them, is analytic in all n variables. [For 
n> 2 the real points in S (p) form a set of dimension 
n ~ 2n-3 and the continuity theorem is sufficient to 
prove the required result.7] The inequality (1") holds 
at all points of S(p) by virtue of (2) when y;cO, and, 
for y=O, because zERl nR2 and f(z)=JI(z)=f2(Z) at 
such a real point. This achieves the proof of the lemma 
which, as has just been seen, contains a special case of 
the "edge-of-the-wedge" theorem. The latter will be 
obtained in a more general case in the next section 
where the proof of the theorem stated in the introduction 
will be completed. 

III. EXTENSION TO THE CASE WHEN THE 
BOUNDARY VALUE IS A DISTRIBUTION 

Notations: z= (Zl,' ·,Zn) is a vector in Cn, z=x+iy, 
x= (Xl," ·,Xn), y= (YI," ·,Yn). We denote 

n 

Ilzll=[L: IZiI2]!, 
;=1 

n 

Ilxll=[L: IXiI2]1, 
;=1 

n 

Ilyll =[L: IYiI 2]!. 
j=1 

2:(r) denotes the real open sphere defined in Rn by 
IIxll <r>O, and 2:(r) the closure of 2: (r). 

Theorem 

Let CI and C2 be two real open cones in Rn, CI and C2 

their closures. Let JI(z) and h(z) be two functions 
satisfying the following conditions. 

(1) fa(z) is defined and analytic in the region Ra: 

Ra={z: IlzIi2<4np2,YECa }, (a=1,2), 

and is continuous at the points of Rex where y;cO. 
(2) When rpE~(2:[2(n)tpJ), for /3= 1, 2, 

lim !h(X+iy) rp(x)dx= T( rp) 
y--> 0 
yEC~ 

where TE~'(2:[2(n)!p]) is a distribution independent 
of /3. 

7 See H. Behnke and P. Thullen, The01'ie der Funktioneu 
Mehrerer Komplexen Veritnderlichen (Verlag Julius Springer, 
Berlin, Germany, 1933), p, 50. 

Then there exists a function fez) analytic in the 
region 

S= {z: IIxll <[(n)t-1]p, yEK}. 

Here K is the convex closure of 2: (p/4v'2)n (CI UC2). 

~(2:[2(n)tp]) is the space of C'" functions with compact 
support contained in the compact set 2:[2 (n)!pJ, as 
defined by Schwartz in Theorie des Distributions (tome 
1, p. 64), and ~'(2:[2(n)lp]) is the dual of ~(2:[2(n)tp]). 

Proof of the Theorem 

Let Ffj be the set of distributions TfjllE~'(2:[(2n)!p]) 
defined, for yECfj, Ilyll ~ (2n)tp, /3= 1 or 2, by 

{

Tfjll(CP) = f cp(x)ffj(x+iy)dx if y;cO 

TfjO(rp) = T(rp). 

Here rpE~(2:[(2n)tpJ). Since Cfjn(2:[(2n)!pJ) is a 
compact set and since Y ~ T fjY( rp) is a continuous 
function of y, the set F fj is compact in the weak topology 
of ~'(2:[(2n)tpJ). Hence,8 Ffj is also compact in the 
strong topology and is bounded. As a consequence, for 
any bounded subset X of ~(2:[(2n)tpJ) the set of 
numbers 

is bounded. 
Let rpE~(2:[(n)!pJ), r,O(x) = rp( -x), and define, for 

Z= (x+iy), IIxl12 ~ np2, IIYl12 ~ np2, yECfj, 

GIJ"'(z) = (Tfjll * r,O)(x) 

= ffIJ(Z+t)rp(t)dt ) 

if y;cO. 

= ffIJ(iY+t')rp(t'-X)dt ' 

We have 

Trl(rp) = Gfj"'(iy) ; G/l"'(xo+x+iy)=G//(x+iy), (3) 

where if;W= rp(t-xo). 

8 See L. Schwartz, TMorie des Distributions (Hermann & Cie, 
Paris, France, 1957), tome 1, p. 74 (hereafter referred to as T. D. 1); 
N. Bourbaki, Elements de MatMmatique (Hermann & Cie, Paris, 
France, 1955), V, Chap. IV, p. 89, def. 5, p. 90, prop. 6 and 7. 
~(~[(n)tpJ) is a Montel space by the argument of T. D. 1, p. 70. 
Its dual is therefore a Montel space. According to Bourbaki, V, 
Chap. IV, prop. 6, compact (resp. bounded) sets coincide in the 
strong and weak topologies. Hence Theorem XIII (T. D. 1, p. 74) 
and the subsequent statements hold for ~'(~[(n)tpJ). See also 
I. Gelfand and G. Shilov, Obobshchennyefunktsii (Moscow, 1958), 
Vol. 2, p. 66 ff. 
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For (3= 1, 2, GfJ<P(z) is a continuous function of Z 

when IIxIl2<np2, IIYIl2<np9, yEC{J.9 Moreover, it is 
analytic in z when zERr/, 

By virtue of the remarks made earlier about the 
boundedness of the set 

the set 

is bounded for fixed cp when zER/, because 

and because the set of the functions if; is bounded when 
cp is fixed and IlxIl2<np2. But, in R/, we have 

a a 
--GfJ<p(x+iy) =i--GfJ(x+iy). 
ax; ay; 

Thus, all the first derivatives of GfJ<P(z) are bounded for 
zER/. Since G1<P(x) =G2<p(x) = (T * ~)(x) for real x, 
IIxW<np2, we can apply the lemma 2 of Sec. II. We 
find that, for cpE:D(~[(n)!p]), there exists a function 
G<p(z) continuing G1<P and G2<P, and analytic in the region 

S'= {z: IIx1l2< (p2/32) , yEK}, 

where K is the convex closure of 2: (p/4VZ)n (C1UC2). 

Furthermore, 

max I G<p(z) I < max max I GfJ<p(z') I. 
zES' 1'l=1,2 z'ERP' 

When cp ~ 0 in :D(~[(n)'p]), GfJ"'(z') tends to zero 
uniformly in z', z'ERr/. Hence G<p(z) tends to zero 
uniformly in z, zES'. This implies that, for zES', 
cp ~ G<p(z) defines a distribution. Let TIl be the dis­
tribution given by TII(cp) = G"'(iy) , for yEK, 

g It is fairly obvious that G~'I'(z) is a continuous function of z 
for yE(J~, y ~o, IIxll' ~np2, lIyl12 ~np2. For y=O, G~"(x) is a 
uniformly continuous function of real x. Moreover, <.!fl. .. (x+iy) 
= TtI'(,y) , where ,yW= 9'(~-x). When 9' is fixed in !D(l;[(n)ipJ), 
,y depends continuously on x and describes a compact, therefore 
bounded set when x describes the compact set !(ntp). Since 
Ttl' -+ T~o weakly when y -+ 0, Ttl' also converges strongly to T,Jl, 
i.e., uniformly on any bounded set. Therefore G~"(x+iy) 
=TtI'(,y)-+G~"(x) uniformly in x when y--+O. The continuity 
of G~"(x+iy) in both x and y follows. 

By analytic continuation of (3), we have, for 

i.e., 

Ilxll <p/4V2, yEK, ""E:D(~[(ni-l/4V1)p]), 

G<P(x+iy) = G>f (iy) , if;W= cp(~-x), 

G"'(x+iy) = (TIl * ~)(x). 
Because G"'(z) is analytic in S', TIl is an infinitely differ­
entiable function of yEK in the weak topology of dis­
tributions and, therefore, also in the strong topology. 
TIl can be considered as a distribution 1 in 2n variables 
as can be seen by the nuclear theorem, or by defining 
directly 

1(1))= f dy[TII,1> (x,y)], 

where 1>=1>(x,Y)E:D{2:[«n)+-I)p]XK}. By consid­
ering functions 1> of the form ",,(x)x(y), we find that 

aj / aXj+iaj / ayj= O. 

By applying the regularity theorem10 to the operator 

n(a2 (2) A=L -+-, 
;-1 ax; ay; 

we see that 1 is a C'" function, therefore an analytic 
function in S. It coincides withfI and12 in their domains 
of definition because they coincide there in the sense 
of distributions, while they are C'" functions. This 
completes the proof of the theorem. 
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APPENDIX 

Proof of Lemma 1 

Let E be the open set of all points satisfying 

----

I zll <pVZ, 1 z21 <pV'1. 

0~tOIY11 <Y2 

Zk=~k+EkZ2, k=3,"', n 

l~kl<p/2, IEkl<a; ~k,Ekreal. 

10 For proofs of the regularity theorem, see for instance, P. Lax, 
Communs. Pure and Appl. Math. 8, 615 (1955); L. Schwartz, 
Lectures on Elliptic Partial Differential Equations (National 
University of Colombia, Bogota, 1956); E. Nelson, lecture notes, 
Princeton University, 1960. 



                                                                                                                                    

G ENE R A LIZ A T ION 0 F THE "E D G E - 0 F - THE - WED G E" THE 0 REM 531 

If we fix h and ~k (k=3, "', n), /I(z) and h(z) 
become two functions of Zl and Z2 satisfying the 
hypotheses of I. Therefore by virtue of the preceding 
argument in two variables, there exists, for each ad­
missible value of ~= (O,O,~3,· .. '~!I) and E= (O,O,E3,· .. ,En), 
a function ~(Zl,Z2; ~,E), analytic in Zl and Z2 for 

p p p p 
IXll <-, IYll <-, IX21 <-, IY21 <-, 
444 4 

p(tO+T) 
tolYl1 <Y2< , 

4 

and coinciding with Ia(Zh Z2, ~k+EkZ2) in their domains 
of definition. 

The region E contains all points satisfying: 

p 
IX2! <-, 

4 

The last conditions can be rewritten, 

p 
IY11 <-, 

4 

This is satisfied, in particular, by all points for which 

p 
IX21 <-, 

4 
p 

IYll <-, 
4 

p 
Y2<-

4 

namely, in R(p). We now prove that, if zER(p), then 
F(z) = ~(Zl,Z2; ~,~) is analytic at z. Here it is under­
stood that 

~k=Xk-YkX2/Y2, Ek=Yk/Y2. 

Let B(p) denote the projection of R(p) onto the space 
of the variables Z2, ••• , z". Let (Z20, •• " z",O) be a point 
in B(p). If z= (zt, Z20, ... , z"O), then F(z) is analytic 
in Zl for 

zlELl'(Z20)={Zl: IXll <tp, IYll <yJto}. 

Moreover, F(z) is analytic in all n variables for 

zIELl(Z20)= {Zl: 'xII <tp, Y2/(tO+T) <Yl<Y2/tO}' 

Applying the generalized Hartogs theorem (see foot­
note 4, p. 141), we conclude that F(z) is analytic 
in R(P). Our construction of I, using the result of 
the two-variable case, makes it obvious that the 
inequality (1') holds. The continuity of I at the real 
points of R(p) follows from an argument similar to that 
made in the case of two variables. 
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The problem of introducing a Cartesian position operator canonically conjugate to the momentum 
operator into relativistic one-particle theories is investigated independent of any particular relativistic 
wave equation. The known result that such a description is possible for particles with nonvanishing mass 
is rederived. The general problem of introduction of canonical variables into relativistic theories is formulated 
and solved. The configurational indices so obtained correspond to directed plane wavefronts rather than 
point particles. 

1. INTRODUCtION 

SPINNING particles are associated with covariant 
differential equations within the framework of 

relativistic quantum mechanics.! Thus for spin 1/2 
particles one has the Dirac equation, for spin 0 par­
ticles one has the Klein-Gordon or Kemmer equation j 
and for the photon one has the Maxwell equation. To 
demonstrate that these relativistic "wave equations" 
do describe relativistic quantum-mechanical particles 
it is necessary to carry out a particle interpretation of 
these equations.2 But in most of these particle inter­
pretations there are puzzling features associated with 
the configurational space descriptions j the appearance 
of such puzzling features is perhaps best known in the 
case of the Dirac equation, but they are nevertheless 
present in the case of the other equations as well. 

These paradoxes always arise from an incorrect iden­
tification of the covariant amplitude entering the 
relativistic equation with the Schrodinger amplitude 
describing the particle. While the covariant form of the 
equations exhibit the Lorentz invariance of the theory, 
it is necessary to be able to reduce the covariant equa­
tion to the canonical form involving the Schrodinger 
amplitude, since it is this amplitude which undergoes 
the unitary transformations under the various opera­
tions belonging to the proper inhomogeneous Lorentz 
group3; and this unitary transformation property is 
basic4 to a quantum theory with an underlying Hilbert 
space (the scalar products in which are to be relativistic 
invariants). In the case of the Dirac equation this re­
duction from the covariant amplitude to the Schrodinger 
amplitude is accomplished by the Foldy-Wouthuysen­
Tani transformation. 5 In a subsequent paper Foldy has 
carried through this reduction in a simple manner for 
the spin 0 and spin 1 equations also. In all these 
"reduced" forms solutions with both positive and 

1 See, for example, S. S. Schweber, H. A. Bethe, and F. DeHoff­
man, Mesons and Fields (Row, Peterson and Company, New 
York, 1955) Vol. 1; E. M. Corson, Tensors, Spinors and Relativistic 
Wave Equations (Blackie and Sons, Limited, London, England, 
1953). 

2 P. A. M. Dirac, Proc. Roy. Soc. (London) A155, 447 (1936); 
N. Kemmer, ibid. A173, 91 (1939); R. H. Good, Jr., Phys. Rev. 
105, 1914 (1957). 

3 C. Fronsdal, Phys. Rev. 113, 1367 (1959). 
4 E. P. Wigner, Ann. Math. 40, 149 (1939). 
6 L. L. Foldyand S. A. Wouthuysen, Phys. Rev. 78, 29 (1950); 

S. Tani, Progr. Theoret. Phys. Kyoto 6, 267 (1951). 

negative frequencies appear on a symmetrical footing 
and this is a consequence of the covariance of the 
relativistic equations with respect to the complex 
Lorentz group. 6 

Two points are to be noted. First of all, the starting 
point here is a covariant wave equation and one might 
ask the question as to whether the final results depend 
on the particular type of wave equation one started 
with; this is especially important for higher spin equa­
tions. We shall show that the position operators are 
independent of the choice of the relativistic equation 
and are very simply related to the structure of the 
unitary irreducible representations of the Lorentz 
group. Secondly, the standard methods fail for particles 
with vanishing mass and finite nonzero spin; it is 
kno)Vn, for example, that the photon cannot have a 
localized state in the sense of being an eigenfunction of 
the three components of the vector position operator. 8 

It is the purpose of this paper to investigate what is the 
maximal configuration specification that one can provide 
in such a case; it will turn out that the maximal speci­
fication corresponds to a "front" form, i.e., the basic 
elements correspond to directed planes rather than to 
points. Here again, one starts with the irreducible 
representations to which the configuration indices are 
directly related. 

2. CANONICAL VARIABLES FOR A 
RELATIVISTIC PARTICLE 

In classical mechanics, with each degree of freedom 
one associates a pair of dynamical variables p, q which 

6 This is an example of the fact that requiring a quantum­
mechanical system be describable by "Euclidean" differential 
equations (i.e., covariant equations not involving the sign of the 
time components of timelike four-vectors) imposes further re­
strictions on the system going beyond relativistic invariance alone. 
All the relativistic wave equations that are usually studied are 
Euclidean equations and'these equations hence remain invariant 
under the complex Lorentz group. On the other hand, the physical 
requirement of relativistic invariance does not demand Euclidean 
invariance. In fact, Euclidean equations cannot be written down 
for a system with only positive energies; and the appearance of 
an arbitrary but fixed time direction in every realization of the 
"particle type" representations of the inhomogeneous Lorentz 
group is no accident. Similar ideas have been discussed previously7 
by Schwinger and by Nakano. 

7 J. Schwinger, Proc. Natl. Acad. Sci. U. S. 44, 956 (1958); 
T. Nakano, Progr. Theoret. Phys. Kyoto 21, 241 (1959). 

8 T. D. Newton and E. P. Wigner: Revs. Modern Phys. 21, 400 
(1949). 
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obey the fundamental Poisson bracket relations 

{pi,qi} =0,;, {pi,Pi} = {qi,qi} =0 (1) 

at any instant of time, the indices referring to the 
various degrees of freedom. A triplet of such pairs of 
canonical variables is associated with a "particle" 
(without spin), provided the three momenta Pi and the 
three coordinates qi transform as the three components 
of a vector under rotations. Under such transformations 
the Poisson brackets are preserved and therefore rota­
tions are canonical transformations. For the simplest 
kind of particles the dynamical variables J i which 
constitute the three components of the angular mo­
mentum pseudovector are algebraically related to the 
momenta and coordinates in the form 

(2) 

It may be, however, that the angular momentum is not 
equal to this expression but is of the form 

(3) 

Then we say that the particle is spinning and the three 
components Si constitute the pseudovector spin 
operator. Since the angular momentum variable is also 
the infinitesimal generator of rotations, using the ex­
pression (1), (2) we obtain 

{S;,Pi} = {Si,qi} =0. (4) 

On using this result together with the fact that the 
angular momentum operator J is a pseudovector, one 
obtains the further result 

(5) 

Thus the spin variables do not belong to a canonical 
set, nor are they expressible in terms of the canonical 
momenta and coordinates.9 For a "free" spinning par­
ticle, the symmetry with respect to translations and 
rotations in three-dimensional space, i.e., the inho­
mogenous Euclidean group, requires the momenta Pi 
and the total angular momenta J i to be constants of 
motion. In addition, if the Hamiltonian is independent 
of spin variables, the spin variables Si will also be 
constants of motion. Notice that invariance under the 
inhomogeneous Euclidean group does not prevent the 
pseudosclar variable SiPi from entering the Hamil­
tonian; if it does, then the spin vector is no longer a 
constant of motion, but the "longitudinal spin" or 
helicity 

1 1 
h=-SiPi=-JiPi 

Ipi Ipi 
(6) 

is a constant of motion; consequently any supple­
mentary condition involving a specific value of h is 
preserved in time. 

9 We mean by "canonical variables" what Schwinger calls 
"canonical variables of the first kind"; compare J. Schwinger, 
Handbuch de, Physik (to be published). 

Turning to quantum mechanics, the "particle" is now 
associated with the same set of dynamical variables 
which are now represented by noncommuting operators. 
The Poisson brackets are to be related to commutators 
and by virtue of the relations (5) and (6) the spin and 
helicity become quantized; however, the important 
point to notice is that an elementary quantum-me­
chanical system is associated with irreducible repre­
sentations of the inhomogeneous Euclidean group in 
three dimensions and not canonical operators. The 
Euclidean group consists of the six generators of trans­
lations and rotations which obey the commutation 
relations 

The two operators 

[T;, TiJ = 0, 

[R;,RjJ = iEdkRk' 

[R;,TiJ = iEijkTk. 

(7) 

(8) 

commute with all the six generators T., Ri and are 
therefore represented by numbers in every irreducible 
representation, the first number being nonnegative. 
Coordinate or spin operators cannot be defined over 
these irreducible representations, since the translation 
generators are identical with the momentum operators 
so that qi, for example, would not commute with either 
of the quantities 'J'2 or T· R. 

Such a mixing of the various irreducible represen­
tations is already brought about by the requirement of 
relativistic invariance. The irreducible unitary repre­
sentations of the inhomogeneous Lorentz group have 
been investigated by Wigner,4,lo and he has found 
several classes of representation. We shall be par­
ticularly interested in three such classes: class I cor­
responds to particles with finite mass and finite spin; 
class II to particles with zero mass and finite spin; and 
class III to particles with imaginary mass and zero 
spinY In the first case the manifold of states corresponds 
to the irreducible representations of the Euclidean 
group with 00>'J'2~0 and h=-s, -s+1, "'s where 
h= ('J'2)-!T'R and 2s is a nonnegative integer; the 
second class has those with 00 > 'J'2~ 0 and h=s with 
21 sian integer; the third class has 00 > 'J'2 ~ 1 m21 > 0 
and h=O. In all cases the energy is real and non­
negative. The Schrodinger amplitude may hence be 
written10 as y.,(p,n with p and r corresponding to the 
three components of momentum and the single helicity 
index. The SchrOdinger equation becomes 

(9) 

10 V. Bargmann and E. P. Wigner, Proc. Nat!. Acad. Sci. U. S. 
34, 211 (1948). 

11 E. C. G. Sudarshan and V. K. Deshpande (to be published). 
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and the unitary scalar product 

From (9) one can see that the energy is positive definite. 

3. DIRAC EQUATION 

Let us now consider the simplest relativistic equation, 
namely, the Dirac equation which represents particles 
of spin t. The covariant differential equation 

[I'~(al aX") +imJ1f= 0 

can be reduced to the pseudo-Hamiltonian form 

ia1f I at = (a' p+,6m)1f 

(11) 

(12) 

by multiplication by il'°. It is well knownI2 that if one 
tries to identify 1f(x,t) with a Schrodinger amplitude, 
so that x is the representative of the position, then the 
representative of the velocity is the matrix a. This has 
the consequence that the components of the "velocity" 
do not commute with each other; and the eigenvalue of 
any component of the "velocity" is ±1 (in units of the 
velocity of light) and, further, the velocity and sign of 
the energy cannot be simultaneously diagonalized. The 
identification of the covariant amplitude 1f as a 
Schrodinger amplitude appeared to be sanctioned by 
the positive definiteness of the probability density 1f*1f. 
Rather than reject the identification of 1f(x) with the 
Schrodinger amplitude, these unusual features were 
attributed to be a mysterious feature of relativistic 
equations. Another such feature was in the lack of time 
independence of the "orbital angular momentum" 
xX p for the free particle. 

The correct position operator and localized ampli­
tudes were worked out by various peopleI3 but the 
correct identification of the Schrodinger amplitude was 
made by Foldy and Wouthuysen6 who showed that the 
amplitude 

{
,6a.

p (P)} rp(x,t) = -i exp -;p tan-1 m 1f(x,t) (13) 

satisfies the Schrodinger-like equation 

(14) 

For rp(x,t) the standard identification of position and 
orbital angular momentum operators14 leads to no 

12 P. A. M. Dirac, Principles of Quantum Mechanics (Oxford 
University Press, New York, 1947), 3rd ed. 

13 See, for instance, M. H. L. Pryce, Proc. Roy. Soc. (London) 
A195, 62 (1948). 

14 Foldy and Wouthuysen distinguish these proper identifica­
tions by the prefix' 'mean"; we prefer to omit this prefix since the 
Dirac position operator (whose representative is the operation of 
multiplication of the covariant amplitude by x), for example, is 
not an operator defined over the states of the particle (since it 
mixes the positive energy solutions with negative energy solu-

unusual features. Notice that according to (13), rp is 
unitarily related to 1f so that the probability density is 
unaltered; but the probability current is altered in 
going from 1f to <po This alteration is brought about by 
dropping all terms which mixed positive and negative 
energies. We also notice that all the identifications of 
the dynamical variables of the particle commute with 
the operator ,6 for the sign of the energy. Hence the 
proper Schrodinger equation is obtained by restricting 
rp in (14) to contain only positive energy solutions: we 
would then get the true Schrodinger equation 

(15) 

where <I> is a two-component amplitude. 
With this formulation of the theory we find that the 

position operator q has the representative X. In other 
words, we have a Cartesian position operator with 
commuting components. Io Foldy has shown16 that the 
Klein-Gordon and Proca fields also can be reduced to 
the forms (14) and (15) in an analogous manner, so 
that we can define Cartesian position operators for 
these systems also. In passing, we also notice that the 
position operators are canonically conjugate to the 
momentum operators 

[Xr,p.] = io rs• (16) 

In contrast to the representation introduced by 
Foldy-Wouthuysen and by Tani (the C representation), 
another representation (called the E representation) 
may be introduced17 in which the analog of (15) is 
given by 

iarpEI at= (a· pip) (f+m2)i<pE. (17) 

In connection with this amplitude rpE a new E-position 
operator was also introduced [which was defined on 
positive and negative energy solutions of (17) sepa­
rately] which had several new features. The com­
ponents of the E-position operator did not commute, 
but Eq. (16) was satisfied. The "longitudinal com­
ponent" of the E-position operator 

XEIOng·=t(XE·P+P·XE)P, (18) 
where 

p=plp (19) 

was identical with the longitudinal component of the 
C-position operator; but the transverse parts were not 
identical. Hence the E-position operator could not be 
usedI8 to specify the "localization indices," i.e., a set 

Hons). Of course both the C-position operator as well as the 
E-position operator introduced in the following are defined over 
the (positive energy) states of the particle. 

15 Of course, any unitary transform q = U (p2)q U-l (p2) is also a 
Cartesian position operator and U can be a function of p2 only 
if the polar vector transformation property of q is to be preserved. 

16 L. L. Foldy, Phys. Rev. 102, 568 (1956). See also K. M. Case, 
ibid. 95, 1323 (1954). 

17 M. Cini and B. Touschek, Nuovo cimento 1, 422 (1958); 
S. K. Bose, A. Gamba, and E. C. G. Sudarshan, Phys. Rev. 113, 
1661 (1959). 

18 The "remedy" suggested by Y. Pac, Progr. Theoret. Phys. 
Kyoto 22, 857 (1959), is incorrect since the "mean E-position 
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of three numbers which could be used to specify a 
coordinate system in Hilbert space.l9 But the E-position 
operator has the nice feature that the E-orbital angular 
momentum is the transverse part of the total angular 
momentum; and furthermore the E-position operator 
was defined for a "two-component" neutrino (Le., a 
zero mass, spin! particle with only one helicity) for 
which the C-position operator cannot be defined. 

Since XE satisfies (16) it follows that 

(20) 

Hence these quantities constitute configuration indices; 
these are only three independent indices since the unit 
vector P is completely specified by two angles and 
together with these XE1ong• provide only a distance 

P=!(XE'P+P'XE), 
=!(x·p+p·x). (21) 

The configurational description provided by the set 
(p,p) is that of a directed wavefront for which P indi­
cates the unit normal and p is the perpendicular distance 
from an arbitrarily chosen origin. The wavefront for a 
free particle advances normal to itself and the speed of 
advance 

(22) 

is the speed of a particle of momentum p. Since the 
values of (p,p) are continuous, the eigenstates are not 
normalizable but are the limits of normalizable func­
tions. If by Ip',8,cp) we represent such an "ideal" state, 
a normalizable state is given by 

1 f)= f(p',8,cp) 1 p',II,cp), (23) 
with 

Ulf)-= f f*(p',8,cp)f(p',II,cp)p'2dp' sinlldOdcp. 

(24) 
=1. 

Since these considerations hold for finite mass and zero 
mass particles (including the two-component neutrino) 
one expects them to be of more general validity than 
the Cartesian configuration description. By a reduction 
similar to the one employed by Foldyl6 we can demon­
strate this result for the Klein-Gordon, Proca, and 
Maxwell equations, but nothing essentially new is 
obtained in this fashion. Instead we demonstrate the 
generali ty of the "front" form of configurational de­
scription by relating the configuration indices (p,p) to 
the Lorentz group. 

It is perhaps appropriate to point out that the choice 
from among a set of unitarily equivalent position 

operator" introduced there, namely, x- (1/2p2) (O"Xp) does not 
commute with the sign of the energy of the E representation and 
hence is not defined on positive and negative energy states 
separately. 

19 It is well known that the transverse part of the "spin" is not 
gauge-invariant in the case of the photon. 

operatorsl • is an arbitrary one and is equivalent to the 
assignment of a specific law for tre interaction of the 
system with prescribed external fields which are 
"known" to be "localized" in a suitable manner. 

4. CONFIGURATIONAL INDICES AND 
THE LORENTZ GROUP 

We have remarked (in Sec. 2) that the proper 
Lorentz transformations already mix the irreducible 
representations of the three-dimensional inhomogeneous 
Euclidean group. For class I particles the manifold4•lo 

responds to all possible real values for the three mo­
mentum components. Hence in this case the operator 
Qr=i(iJjiJPr) which differentiates the momentum am­
plitude can be defined. For class II particles there is the 
helicity restriction so that one cannot differentiate freely 
with respect to the three components but the operator 

is defined. Finally for class III particles, since the 
momentum spectrum excludes a sphere of radius 
(-m2)t, not even Ql is defined. 

Let us now construct the generalized E-position 
operator qE. For this purpose introduce the operator 

(26) 
and write 

(27) 

By direct computation one can verify that in the case 
of the Dirac equation qE so defined coincides with the 
E-position operator. We also notice that for a non­
relativistic spinning particle, for which J = L+ S, 

(28) 

which shows that this operator differs from the standard 
position operator by "spin" contributions. In the general 
case the two terms on the right-hand side may not be 
separately defined19 but qE is defined in all cases. In 
complete analogy with the Dirac particle case, the 
components of qE do not commute and one has 

so that the lack of commutation is a "spin" effect. 
Finally the generalized E-orbital angular momentum 

qEXP=J-J·pp (30) 

is equal to the transverse part of the total angular 
momentum. All these operators are defined for both 
class I and class II particles. Thus the E-position 
operator is a more "natural" position operator.n 

However, for spinning particles PE cannot be used 
as a set of configuration indices, but we can proceed in 
exactly the same fashion as in the previous section and 
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introduce the "front" form20 with 

(31) 

Thus a uniform description of all observed particles 
(belonging to class I and class II) is made possible in 
the "front" form. 

The question now arises as to when one can introduce 
a "point" form in terms of a Cartesian position operator 
in analogy to the C-position operator. From the fore­
going demonstration it follows that this is equivalent 
to the possibility of separating out the spin part 
[compare Eq. (28)]. For this purpose it suffices to be 
able to define the pure orbital angular momentum 
L=J-S; this can always be done if Qr can be defined 
since L=QxP. Hence the "spin" can be separated 
out and the Cartesian configuration indices introduced 
in the case of class I particles. Thus for class I particles 
we can use either the "front" form or the "point" form 
of configurational description but for class II particles 
only the "front" form is possible. For either class of 
particles, in the "front" form the helicity may be used 
along with the configurational indices for a complete 
specification of the state. 

S. DISCUSSION 

The development in the previous sections shows that 
if we are willing to identify the simplest relativistic 
quantum-mechanical entities with relativistic particles, 
at least for spinning "particles" of zero mass, the notion 
of position does exhibit unusual features. Notice that 
this unfamiliar nature has nothing to do directly with the 
vanishing mass (and consequent infinite Compton 
wavelength) since for zero mass particles without spin, 
one can define localized states; and one could do this 
for a Dirac particle with vanishing mass. It is curious 
that such particles do not seem to exist and that the 
two known particles of zero mass, namely, the neutrino 
and the photon, do not permit configurational de­
scription in the "point" form. 

It is of particular significance to note that the photon 
does not admit a "point" description and hence the 

., The definitions and notions introduced here are different in 
principle from those of Dirac. See P. A. M. Dirac, Revs. Modern 
Phys. 21, 392 (1949). 

statement that a photon is at any specific point at a 
definite instant is meaningless. And the notion of 
"signal" propagation and signal velocity in relativistic 
quantum mechanics is much more subtle than has been 
generally acknowledged. We also notice that while 
special relativity requires the invariance of dynamical 
laws under change of the Lorentz frame, physical inter­
pretation requires the choice of a definite (arbitrary, 
but fixed) time direction. The specification of the 
proper quantum-mechanical state and more generally 
the description of a sequence of quantum-mechanical 
phenomena is then dependent upon this chosen time 
direction. This chosen time direction enters in a natural 
fashion into the realization of the representations of the 
Lorentz group by (infinite-dimensional) unitary ma­
trices. In the physically interesting cases of free particles 
considerable ingenuity has gone into the construction 
of covariant relativistic equations to represent free 
particles of class I and class II. The elegance of formal 
manifest covariance is thus an irrelevant feature. The 
question naturally arises whether one can demand that 
interacting particles be represented by local manifestly 
covariant differential equations. If there is any funda­
mental reason for such a requirement, the present 
authors are unaware of it; and the analysis of the 
quantum-mechanical description initiated in the fore­
going sections casts doubts on the existence of any such 
reason. 

From our point of view the choice of the time direc­
tion is a necessary prerequisite to any attempt at 
physical description; and thus the generalization of the 
notion of localized states to class II particles given by 
Fronsdal3 is unacceptable within this framework. 

In this paper we have confined our attention to free 
particles only. The study of interacting relativistic 
particles is best done in relation to specific relativistic 
equations. The systematic analysis along these lines is 
to be presented in another paper in collaboration with 
K. Bardakci. 
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It is known that there exist no nontrivial static regular solutions of the Einstein vacuum equations 
&:1=0 which are asymptotically Galilean at infinity. One may ask correspondingly whether there exist 
static solutions of the equations Rk!'=Xgkl(X<O) which are regular at all finite points and asymptotic (in a 
sense to be defined) to a space of constant curvature at infinity. The answer to this question is here shown 
to be in the negative. The proof rests upon the possibility of writing a certain quadratic invariant density 
of the Riemann tensor in the form of an ordinary divergence. 

1. INTRODUCTION 

I T is well known 1-6 that there exist no static solutions 
of the Einstein vacuum equations8 

(1.1) 

which are regular everywhere and asymptotically 
Galilean at infinity, other than those representing 
everywhere flat spaces. The static and asymptotically 
Galilean character of the solution is understood to mean 
that in a properly adapted coordinate system the metric 
tensor satisfies the conditions 

(1.2) 
and 

respectively. In the stated result the assumption is 
implicit that the entire V 4 can be covered with a system 
of topologically Euclidean coordinates. 

The question naturally arises as to whether it may 
be possible to arrive at any analogous results when one 
contemplates the Einstein vacuum equations including 
the cosmological term 

(1.4) 

in place of (1.1), that is to say when one considers 
Einstein spaces (X<O) instead of special Einstein 
spaces (X=O). In that case the imposition of conditions 
regarding "flatness at infinity" plainly become mean­
ingless, and need to be replaced by some other corre­
sponding conditions. This paper therefore considers the 

.. On leave from the Physics Department, University of Tas-
mania, Hobart, Tasmania, Australia. . 

1 R. Serini, Atti accad. nazI. Lincei (5) 271, 235 (1918). [Pre-
sented in outline in footnote reference 3.] 

2 A. Einstein, Rev. univ. naco Tucuman Ser. A, 2, 11 (1941). 
3 A. Einstein and W. Pauli, Ann. Math. 44, 131 (1943). 
4 A. Lichnerowicz, Compt. rend. 222, 432 (1946). 
5 A. Lichnerowicz, Theories l'elati'llistes de la gravitation et de 

l'~lectromagnitisme (Masson, Paris, 1955), Chap. 8. 
a As regards roman indices, those denoted by the first eight 

letters of the alphabet run from 1 to 3, and the remaining letters 
from 1 to 4; x4 is the timelike coordinate. 

following question, made more precise in Sec. 8: do 
there exist static regular Einstein spaces of a certain 
type which are asymptotic at infinity to a space of 
constant (negative) curvature7 but not of over-all 
constant curvature? This problem, though somewhat 
specialized, corresponds to that described earlier in a 
natural way, and the answer to it turns out to be in the 
negative. 

Now the general methods based on global theorems 
concerning elliptic linear differential operators5 on the 
one hand, and the method of surface integrals in terms 
of the integrands used previously1-3 on the other do 
not seem to be readily adaptable to the case in hand. 
For the purpose of using the method of surface integrals 
it will therefore first be shown explicitly how a certain 
quadratic invariant density ~ of the Riemann tensor 
may always be written as an ordinary divergence m.V.h 
whether the metric be static or otherwise. In the non­
static case I have been able to obtain m.v explicitly only 
in the form involving the components of the linear 
spinor connection.8 Whether this is an essential feature 
of 5ill t , if the latter be required not to involve third or 
higher derivatives of the gkl, is an open question. In the 
static case }fit can be written in a variety of forms, all 
of which are remarkable for their simplicity, especially 
when the V, is an Einstein space; 5ill t is then a vector 
density in Va, i.e., the three-dimensional subspace 
x4=const [the coordinate system satisfying (1.2)]. At 
any rate, the present development is intended not so 
much to show how a particular problem may be solved 
as to indicate a method whereby certain questions 
concerning the existence of various types of solutions 
of the field equations might possibly be answered . 

2. QUADRATIC INVARIANTS 

(a) In a general V, the Riemann tensor possesses 
four independent quadratic invariants, which may be 

7 "Constant curvature" is always intended to mean constant 
Riemannian curvature. 

S The spinor analysis involved herein, and the notation used is 
that of L. Infeld and B. L. van der Waerden, Sitzber. preuss. 
Akad. Wiss. Physik. math. KJ. (1933), 380. 
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chosen to be 

Kl=R2, K2=R.tR8t, K3=Rkl.tR.kIBt, 

K4= eklpqRkl.tR.pqBt, (ekl•t= (-g)-teklst). 
(2.1) 

It is known9•10 that (in a V 4) the Hamiltonian derivative 
of K4 and of the invariant 

K=K l -4K2+K3 (2.2) 

both vanish identically. The fact that there are just 
two such invariants suggests that they may appear in 
a natural way as the real and imaginary parts, respec­
tively, of a complex invariant S formed of the spin 
curvature tensor.H This is, indeed, the case; and the 
identical vanishing of the Hamiltonian derivative of S 
may be shown in a particularly simple way, without 
the introduction of special coordinate nets, etc. Thus 
consider the invariant 

(2.3) 

where S is the spin curvature tensor of Infeld and van 
der W aerden. 8 Expressing it in terms of the Riemann 
tensor one has 

or, using the propert~es of the (]" symbols,12 

S = lekl•t (gmng pq+ gmqgnp_ gmPgnq+iemnpq)RmnktR.pq8t 
= - K4+1iekl.temnpqRmnktR.pq8t. 

The second term on the right may be transformed as 
follows: 

ekl.lemnpqRmnktR.pq,t= ekl.temnpqRmnktR.pq.t 

= -OmnpqkI8tRklmnR8tPfJ= -4K, 

the generalized Kronecker delta having been written 
as a determinant of simple Kronecker deltas. Accord­
ingly, one has the required result 

(2.4) 

(b) Consider now the integral 

Then for infini tesimal variations of the spinor connection 
which vanish on the boundary of the region of inte-

9 R. Bach, Math. Z. 9, 110 (1921). 
10 C. Lanczos, Ann. Math. 39, 842 (1938). 
11 Now and hereafter the signature of V. is always understood 

to be -2. 
12 Barish-Chandra, Proc. Indian Acad. Sci. 23, 152 (1946). 

gration 

oJ = 2 J ekl8lP"'flklOPfi a.td(4)x 

=4f eklstP"'{3kl(or fl"'t);.d(4)x 

= -4 J ekl.tpaflkl;.orfl",td(4)x=O. 

In the first step the spinor version of "Palatini's trick" 
has been used, the second step is the result of an inte­
gration by parts, and the last represents an application 
of the Bianchi identity. These few lines therefore suffice 
to demonstrate the property of K4 and K in question. 

3. IDENTITY .!f=lKV 

From the foregoing results, one will conclude that 
~[ = (-g)iKJ in particular should be expressible as an 
ordinary divergence. The question therefore arises as 
to the explicit form of a quantity'ill t such that ~='ill.l 
identically. It may be obtained by inspection as follows. 
From (2.3) and the definition of Pflkla one has 

®= 4ekI8t(raflk.l+ rXflkraXI) (rfl a •• t+ r p a.rflpt) 
= 4eklstr fl 

018.1 (raflk,l+ 2rXflkraXl), 

the remaining terms vanishing identically, since the 
antisymmetrized product of an even number of r's all 
of whose spinor indices are paired so vanishes. With 
this remark in mind one then sees immediately that 

®=ll,tt, 
where 

(3.0 

Hence in any V4 (which has the signature - 2) 

~='ill,tt, 'illt= - 2 Imllt. (3.2) 

'ill t is, of course, determined only to within an arbitrary 
additive term of the form fUm] ,m, but as far as integrals 
over closed surfaces are concerned this is of no con­
sequence. 

4. STATIC CASE 

(a) When the V4 is static 'ill t may be exhibited in a 
very simple tensorial form, the only allowed trans­
formations of coordinates now being of the type 
'x"= 'x"(xb). Instead of using (3.1) it is more convenient 
to start ab initio. On taking the metric in the form 

ds2= ga~x"dXb+g44(dx4)2, (gkl,4=O), 

and writing 

(4.1) 

(4.2) 

whichever is the most convenient, the only essentially 
distinct surviving components of the Riemann tensor 
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are easily found to be 

Rabcd=oRBbcd, R4bc4=q;bc+q;bq;c=tbc, say. (4.3) 

Here tensors having a subscript 0 on the left, covariant 
differentiation, and juggling of indices all refer to the 
space whose metric tensor is gab, i.e., to the subspace 
Va of V4 defined by x4=constant. Then 

Ka= (oRabcd)(oRabcd)+4R4bc~4bc4. (4.4) 
Again, 

Rab=oRab+tab, R 44=j2t, (t=taB); R=oR+2t. (4.5) 

Using (4.3-5) one finds thus that 

K=oK-8tab(oRab)+4oRt. (4.6) 

However, in anyla Va, 

Rabcd= 4g[a[d(Rc]b]- i:gC]b]R), 

which implies oK=O. Now 

( - g)!= j( - detgab) t= jw, say, (4.7) 

and it is convenient also to write f for wj, but in so doing 
one has to remember that f does not arise fromj through 
multiplication by (-g)t. In other words f is a scalar 
density in Va. Then 

~=4oRfbL8oRabf;ab=8[(!gab oR- oRab) falb, 

in view of the identity of Bianchi. Hence one has finally 

5ffia=8(!gab oR-oRab)f;b, 5ffi4=0. (4.8) 

It may be remarked that 5ffia is itself a divergence (in 
the covariant sense), viz., 

(4.9) 

s. ELEMENTARY APPLICATION 

It may be appropriate to interpolate at this stage 
the derivation of a known result. Consider any static, 
topologically Euclidean solution of (1.1) which is 
asymptotically Galilean at infinity, but does not repre­
sent a space which is everywhere fiat. Let X(P) be the 
value of the integral of ~ extended over a sufficiently 
large region W of Va bounded by a "spherical" surface 
U: r=constant=p, say. Then in virtue of the theorem 
of Gauss 

(5.1) 

Using quasi-polar coordinates it is not difficult to 
confirm on the basis of the linear approximation that 
5ffil is at most o(,-a) for sufficiently large r. Accordingly 
the integral on the right of (5.1) tends to zero as p---+ 00, 

so that X[ = X ( 00 ) ] = O. However, if at any arbitrary 
point P one introduces coordinates such that (g"I)P= '1/"1 
then, at P, K (=Ka here) is the sum of terms of the 

13 L. P. Eisenhart, Riemannian Geometry (Princeton University 
Press, Princeton, New Jersey, 1926), Chap. II, p. 91. 

form (Rklmn)2, keeping in mind that components of the 
Riemann tensor an odd number of the indices of which 
have the value 4 here vanish identically. K is therefore 
positive semidefinite and so must vanish everywhere if 
X is to be zero. By the same token the individual 
summands must vanish separately, i.e., Rk1mn=0. 
There exist therefore in fact no solutions of the type 
here contemplated. 

6. STATIC EINSTEIN SPACES 

(a) Let it be supposed that the V 4 is a static Einstein 
space, i.e., the metric (4.1) satisfies the Eqs. (1.4). 
Then it follows from (4.5) that 

(6.1) 
i.e., 

!gab oR - oRab= tab= j-l pab. 

Equation (4.9) then assumes the remarkably simple 
form 

(6.2) 

where ~ is the Laplacian operator in Va. Alternatively 
one has from (4.8) 

(6.3) 

(b) In the case of a static space of constant (negative) 
curvature the int~gral X(p) will obviously diverge as 
pa as p ---+ 00, and the same will be true if the Einstein 
space is in some sense asymptotic to such a space of 
constant curvature (d. Sec. 8). It is therefore convenient 
to introduce the tensor 

Then 
(6.4) 

(6.5) 

However, because of (1.4), Ka=K, and since the space 
is static K' is positive semidefinitel4 ; thus 

K'=K- (8/3)>'2~0. (6.6) 

If V4 is of constant curvature K', unlike K, vanishes 
identically. 

(c) Now, by (3.2) and (4.7) 

~'( = (-g)tK')=5ffi,aa- (8/3)>.2f. (6.7) 

On the other hand, the second member of (6.1) may 
be written 

(6.8) 

Using (5.4) and (6.8) it follows from (6.7) that Sf' 
also may be written as an ordinary divergence, viz., 

~'= f),aa, f)a= 4wj-l (f;bP-!>.f);a. (6.9) 

Incidentally one has here, analogously to (4.9), 

f)a='~ab;b, '~ab=8(f;ab_!>.gabf). (6.10) 

14 See the argument of Sec. 5. 
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7. STATIC SPACES OF CONSTANT CURVATURE 

If a V n is of constant curvature, then 

Rk lBi=jXgl[.ll t/. (7.1) 

If a V4 is static it follows from this and the first member 
of (4.3) that Va is also of constant curvature and hence 
there exist coordinates such thatlii 

gab= (1-u)-2'1ab, 12u=A'1cdXcXd; (7.2) 
and then 

j= (l+u)j(l-u). (7.3) 

If one writes X= -3k2 and introduces new coordinates 

Xl = f sinO cosq" x2 = f sinO sinc/!, 

x3=fcosO, X4=t, f=2k-2r-l[(1+k2r2)!-lJ, 
(7.4) 

then the metric of the static space S of constant cur­
vature becomes 

ds2= - (1 +k2r2)-ldr2-r~(dfP+sin20dcp2) 

+ (1+k2r2)dP. (7.5) 

If k is real (and this condition will henceforth be 
imposed), then (7.5) is a static form of the metric of 
an open de Sitter space. 

It should be noted that it would be useless to consider 
closed de Sitter spaces (X>O) in the present context 
since in such a space the spatial distances from the 
-origin of all points of the space have an upper bound. 

B. STATIC SPACES S* ASYMPTOTICALLY OF 
CONSTANT CURVATURE 

This section deals with the definition of those 
Riemann spaces S* asymptotic to S which are to be 
admitted for consideration. An S* is defined by the 
following conditions [of which (4) is merely one of 
convenience] : 

(1) there exists a set C of topologically Euclidean 
coordinates x' covering the entire space, such that 

(2), (3), (4) relative to C the metric tensor of S* 
satisfies the conditions (1.2), is regular (of class C2) at 
all finite points, and has determinant -1; while 

(5) the transformation of coordinates (7.4) gives the 
metric the form 

ds2= - (1 +k2r2- 2mrl+wl)-ldrL r2(1 +w2)dfP 

- r2 (sin20+wa)dcpL 2r2'1dOdcp 

+ (1 +k2rL 2mrl+w4)dt2, (8.1) 

m=constant; w.=0(r2), o,w.=OCr), 

oBW.=0(r-2), o,pW.=0(r2), 

for all r>rl' where rl is sufficiently large16 ; 
(6) the Eqs. (1.4) are satisfied. 

16 Footnote reference 13, Chap. 2, p. 85. 
18 For the purposes of later sections weaker conditions upon 

the asymptotic behavior of "" and "'3, and of all the first deriv­
atives of "'. other than 0""'4 would actually be adequate. 

The function,! is fixed by condition (4) since the deter­
minant g of the metric tensor must now be -r4 sin20. 
The somewhat strange choice of the generic form of 
the metric is one of convenience; it is important for g 
to have the chosen form, but in that case one cannot in 
general orthogonalize the metric completely. 

In the first place it may be remarked that when k=O, 
so that S is flat (though this possibility will hereafter 
be excluded), the usual linearized field equations show 
that with a suitable choice of coordinate system the 
metric tensor must (then) have the form (8.1) to the 
required order. Further, the same is true (k ~O now) 
when Va is spherically symmetric, for then (8.1) with 
w. = 0 is in fact an exact solution of the field equations 
when r is not too small. If one adopts a physical view­
point17 one may look upon (8.1) as representing the 
asymptotic form of the solution of the field equations 
corresponding to a finite distribution of "particles" 
about the origin. Then in a sense the foregoing de­
finition implies the assumption that the effects of the 
"multipole moments" of the distribution asymptotically 
fall off more rapidly than the effects of the "monopole 
moment." It is possible that the formal counterpart to 
this behavior may be deducible from the field equations. 
However, though it is easy to write down the generic 
linearized equations, viz., 

Dh.t+h;.t- 2h(.; 1)= 2k2(h. t- g.th), 
(h=h.·, h.=h.t;t), (8.2) 

where h. t are the "infinitesimal" differences between 
corresponding components of the metric tensors of S* 
and S, the explicit form of these equations is so complex 
that I have hitherto been unable to arrive at any 
definite conclusions in this respect. At any rate, the 
definition of S* given in the foregoing will here be 
adopted. 

9. PROOF THAT m MUST VANISH 

Equation (6.8) may be written 

(Wg"b h) ,a = Xw j, 

or, since wj=r2 sinO, 

(r2 sinOg"bj-lh),a=Xr2 sinO. (9.1) 

Now integrate both members of (9.1) over W, taking 
p>rl (d. Sec. 5), and apply the theorem of Gauss, 
keeping in mind condition (3) of Sec. 8. Then 

i (r2 sinOgllj-l!.l)r=pdOdcp= -47rk2p3. (9.2) 

Using (8.1), the left-hand member of (9.2) is easily 
evaluated, the result being -4n{k2p3+m +O(p-l)J. By 
allowing p to tend to infinity it therefore follows at 
once that m must be zero. 

17 One should then, to be consistent, restrict m to be non­
negative. 
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10. PROOF THAT S* MUST BE OF OVER-ALL 
CONSTANT CURVATURE 

The theorem of Gauss may now be applied also to 
the integral of sr' extended over W. Thus, because of 
(6.9), using a nomenclature analogous to that occurring 
in Sec. 4. 

X'(p)= f sr'd(3)x= f (fY)r=pdOtbp. (10.1) 
W !l 

Now from (8.1), when r>rl' 

gbchf.c= -k2[k2r2+2mr-1+O(r2)J, 
- iXj2= k2(k2r2+ 1-2mr1+O(r-2)J, 

gllwf-l= -[1+0(r-4)Jr2 sinO, 

where despite the result of the previous section m has 
not been set equal to zero for the time being. It therefore 
follows that 

and therefore as p ~ 00 

X'= -16n-mk2• (10.2) 

Setting m=O at this stage in accordance with the result 
of Sec. 9 one has X' = O. Then the same kind of argument 
which was used in Sec. 5 to show that there R k1mn had 
to vanish will show here that one has to have 

Jk1mn=0, (10.3) 

i.e., S* must be of over-all constant curvature. 
As a final remark it may be noticed that if one 

imposes the restriction m~O from the outset (d. 
footnote reference 17) then Sec. 9 may be omitted 
entirely, and at the same time one need no longer 
bother with the normalization of g. This is at once 
obvious from (10.2) since certainly X' ~O. 
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In~ariant-theoretical considerations are employed to obtain constitutive equations for the current 
denslty ~ector, the heat flux vector, and the magnetic intensity field in isotropic materials (both holohedral 
and hemlhedral) ~hen an electric field, a magnetic induction field, and a temperature gradient are simul­
taneo~sly prese?-t m the material. Certain of the interaction effects which are indicated by these constitutive 
equatlOns are dlscussed. 

INTRODUCTION 

IN two previous papers,1·2 the manner in which in-
variant-theoretical considerations may be used to 

derive nonlinear constitutive equations in continuum 
physic~ has been discussed. In a subsequent paper,a 
these Ideas are applied to the formulation of the 
constitutive equations for electrical or thermal conduc­
tion in an isotropic solid which undergoes deformation. 
In the present paper, a similar approach is taken to the 
formulation of constitutuve equations which describe 
the possible effects on the electrical current density 
vector J, the heat flux vector q, and magnetic field H 
resulting from the simultaneous presence in a material 
of an electric field E, a temperature gradient "I: and a 
magnetic induction field B. The materials with which 
we are concerned in this paper are isotropic and both 
the cases of holohedral and hemihedral isotropy are 
considered. However, the approach taken may readily 
be ~pplied to materials with other types of symmetry. 
It IS assumed that the materials with which we are 
concerned do not undergo deformation, i.e., thermal 
expansion, electrostrictive and magnetostrictive effects 
are neglected. Methods similar to those used in the 
present paper could be extended to include such effects. 

In formulating the constitutive equations, J, q, and 
H have been taken as the dependent variables and E 
"1:, and B as the independent variables. This is not ~ 
unique choice and some other choice of three dependent 
and three independent variables from these six vectors 
might prove preferable from certain points of view; 
however, for any particular choice the resulting con­
stitutive equations can easily be obtained by appro­
priate substitutions from those derived here, to which 
they are, of course, algebraically equivalent. 

In the present paper, the constitutive equations are 
first derived without restriction on the magnitude of the 
va~iables involved. It can easily be seen that they de­
scn.be many well-known th~rmoelectric, galvanomag­
netIc, and thermomagnetic effects. They also indicate 
the possibility of the existence of further effects which 
as far as the author is aware, have not yet been re~ 
ported. A complete analysis of all such effects would 

probably not be a worthwhile task out of the context 
of an experimental program aimed at observing them, 
since their nature is fairly evident directly from the 
constitutive equations. 

The general constitutive equations derived in this 
paper are specialized to the cases when they are linear 
in the independent variables, of second degree in 
these, and of third degree.4 The constitutive equations 
so obtained may be expected, for a given material, 
temperature, etc., to apply for increasingly large ranges 
of values of the independent variables. 

The ranges over which each of these sets of constitu­
tive equations provide a close approximation to experi­
ment will depend, of course, on the material, its tem­
perature, and so on. From the experimental results 
(see, for example, Jan6) on such galvanomagnetic and 
thermomagnetic effects as the Hall effect, the magneto­
resistive effects, the Nernst and von Ettinghausen 
effects, it is apparent that at any rate in solids the 
magnitude of such interaction effects generally in­
creases as the temperature is lowered. With this increase 
comes the need for constitutive equations which include 
higher-degree terms and possibly those of the full 
generality obtained in this paper. 

In previous work, constitutive equations equivalent 
to the first-, second-, and third-order equations con­
sidered here have been derived for the holohedral 
isotropic case and for the various crystal classes. The 
constitutive equation is taken (as in the present paper) 
to be a polynomial relation between a dependent vector 
and a number of independent vectors. The restrictions 
imposed by the material symmetry on the coefficients 
of terms of given partial degrees in the independent 
vectors are then considered. This is usually an ex­
tremely laborious procedure and can only be carried 
out for terms of relatively low total degree. A brief 
description of some of this work is given in the review 
article by Jan,5 where references to the original papers 
are given. This approach is also taken in a review 
article by Smith.6 In contrast, the more powerful in­
variant-theoretical method adopted in the present 

, The third-degree constitutive equations are discussed explicitly 
only in the case of holohedral materials. 

12~ ~ii59~~pkin and R. S. Rivlin, Arch. Rational Mech. Anal. 4, 6 J.-P. Jan, in Solid State Physics, edited by F. Seitz and D. 
2 R S R' Ii A ch . Turnbull (Academic Press Inc., New York, 1957), Vol 5 p 1 
3 • • !v~, r . RatlO~al. Mech. Anal. 4, 262 (1960). 6 C. S. Smith in Solid State Physics, edited by F. S~it; a~d ·D. 

A. C. Plpkm and R. S. RlVlm, J. Math. Phys. 1, 127 (1960). Turnbull (Academic Press Inc., New York, 1957), Vol. 6, p. 175. 
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paper yields constitutive equations of closed form 
which are applicable generally, without limitation on 
the degree of the polynomial. 

In some of the earlier work, the further restrictions 
imposed on the form of the constitutive equations by 
the assumption that they must obey Onsager's principle 
are also discussed. Such restrictions are not discussed 
here since it is considered that the area over which 
Onsager's principle may legitimately be employed is in 
considerable doubt. 

2. CONSTITUTIVE EQUATION FOR THE 
ELECTRICAL CURRENT 

We assume that an electric field E, a magnetic induc­
tion field B, and a temperature gradient field "C act in an 
electrical conductor or semiconductor. Let J be the 
associated current density vector. Then we may assume 
that J is a polynomiaF function of the vectors E, B, 
and "C, thus: 

J=F(E,B,"C). (2.1) 

We now consider the restrictions imposed on the con­
stitutive equation (2.1) by symmetry of the material. 
Let {S} denote the group of orthogonal transformations 
characterizing the symmetry of the material and let S 
be a generic transformation of this group. Then 

S·SI=SI·S=I, (2.2) 

where SI denotes the transpose of Sand 1 is the unit 
matrix. 

The constitutive equation (2.1) must be form­
invariant under the group of transformations {S}. 
This implies that 

J*= F(E*,B*, "C*), (2.3) 
where 

J*=S·J, E*=S·E, B*=±S·B 
and 

"C*=S'''C, (2.4) 

the positive sign in the expression (2.4) for B* being 
taken if S is a proper orthogonal transformation and 
the negative sign if it is an improper orthogonal 
transformation. 

From (2.1), (2.3), and (2.4), we obtain 

polynomial in the elements of an integrity basis for 
these vectors. We note that it is linear in tl!. We note 
also that 

F(E,B,"C) = (l5'j(ltl!. (2.8) 

3. HEMIHEDRAL ISOTROPIC MATERIALS 

If the material considered is a hemihedral isotropic 
material, then the group {S} describing" its symmetry is 
the proper orthogonal group. We may, in this case, 
treat the vector B as though it were an absolute vector. 
On omitting elements which are nonlinear in tl!, an 
integrity basis for the vectors tl!, E, B, and "C under the 
proper orthogonal group is formed by (see, for example, 
Wey18) 

tl!·E, tl!·B, tl!. "C, [tl!,E,B], [tl!,"C,B], [tl!,E,"C] (3.1) 

and 

E·E, B·B, "C. "C, E·B, "C·B, E· "C, [E,"C,B], (3.2) 

where square brackets denote the scalar triple product. 
5' is therefore expressible in the form 

5' =0:1 tl!. E+0:2tl!· B+0:3tl!· "C+0:4[ tl!,E,B] 
+0:5[ tl!,"C,B]+0:6[ tl!,E,"C], (3.3) 

where the a's are polynomials in (3.2). From (3.3), 
(2.8), and (2.1) we obtain 

J=0:1E+0:2B+0:3"C+0:4EXB+0:6"CXB+0:6EX "C. (3.4) 

4. HOLOHEDRAL ISOTROPIC MATERIALS 

The constitutive equation for a holohedral isotropic 
material may be obtained from the constitutive Eq. 
(3.4) for a hemihedral isotropic material by introducing 
the further requirement that it be form-invariant under 
the central inversion transformation S= (-1, -1, -1). 

We note that for this transformation, we have 

~=-~ W=~ ~=-~ P=-~ 

E*XB*=-EXB, "C*XB*=-"CXB, 
E*X "C*=EX "C, (4.1) 

E*·E*=E·E, B*·B*=B·B, "C*'''C*= "C' "C, 

E*·B*=-E·B, E*·"C*=E·"C, "C*·B*=-"C·B 

F(E*,B*,"C*) = S· F(E,B, "C), (2.5) and 

where E*, B*, "C* and E, B, "C are related by (2.4). If tl! 
is an arbitrary absolute vector and 

tl!*= S· tl!, (2.6) 

we obtain from (2.5), with (2.2), 

tl!*·F(E*,B*,"C*) = tl!. F(E,B, "C) = 5'(say). (2.7) 

5' is then an absolute scalar invariant under the group 
{S} of the three absolute vectors tl!, E, and "C and the 
axial vector B. It may therefore be expressed as a 

7 We mean by this that each component of J in a given rec­
tangular Cartesian coordinate system is a polynomial in the com­
ponents of E, B, and "C in the same system. 

[E*,"C*,B*]= [E,"C,B]. 

We therefore have, from (3.4), that 

O:l(E· B,"C' B)E+a2(E· B,"C' B)B+0:3(E· B,"C' B) "C 
+0:4(E· B,"C ·B)EXB+0:6(E· B,"C' B)"CXB 
+0:6(E· B,"C' B)EX "C 

=O:l(-E·B, -"C·B)E-0:2(-E·B, -"C·B)B 
+0:3(-E·B, -"C·B)"C+a4(-E·B, -"C·B)EXB 
+a6(-E·B, -"C·B)"CXB 

-a6(-E·B, -"C·B)EX"C, (4.2) 

8 H. Weyl, The Classical Groups (Princeton University Press, 
Princeton, New Jersey, 1946). 
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polynomial dependence of the a's on E· E, B· B, ~.~, 
E·~, and [E,"I:,B] being understood. It follows from 
(4.2) that a2 and a6 must be polynomials of odd degree 
in E· B and ~. B, while the remaining a's are of even 
degree in E·B and ~·B. 

The constitutive equation for the electrical current 
in a holohedral isotropic material may therefore be 
written as 

J =alE+a3~+a4EXB+a5"1:XB 
+ [a2'E· B+a2" ~. B]B 

+[a6'E·B+a6""I:·B]EX~, (4.3) 

where the a's are polynomial in 

E·E, B.B, ~.~, E·~, [E,~,B], (E·B)("I:·B) (E·B)2 

and 
(4.4) 

The constitutive Eq. (4.3) may be expressed in an 
even simpler form by employing the identities 

(E·B)EX ~==[E,"I:,B]E- (E·E)~xB+ (E· "I:)EXB 

and (4.5) 

(~·B)EX ~==[E,~,B]~+ ("I:. "I:)EXB- (E· "I:)~XB 

which may be easily derived from the identity (9.3) in 
the Appendix by making appropriate substitutions. 
On using these relations, we see that (4.3) may be 
expressed in the form 

J =alE+a3~+a4EXB+a5~XB 
+[a2'E·B+a2""I:·B]B, (4.6) 

where the a's are polynomials in the quantities (4.4). 

s. FIRST- AND SECOND-ORDER CONSTITUTIVE 
EQUATIONS FOR THE CURRENT 

If we neglect terms of higher degree than the first in 
E, B, and ~ in the constitutive equation for the current, 
then in the hemihedral case it takes the form 

J=alE+a2B+a3~, 

and in the holohedral case it takes the form 

J=alE+a3~, (5.2) 

where the a's are constants. Equations (5.1) and (5.2) 
are the first-order constitutive equations for hemihedral 
and holohedral isotropic materials, respectively. 

If we neglect terms of higher degree than the second 
in E, B, and "1:, the constitutive equation for the hemi­
hedral isotropic material becomes 

J =alE+a2B+a3~+a4EXB+a5~XB+a6EX ~ (5.3) 

and that for the holohedral isotropic material becomes 

J =a1E+a3"1:+a4EXB+a5"1:XB, (5.4) 

where again the a'S are constants. Equations (5.3) 
and (5.4) are the second-order constitutive equa-

tions for hemihedral and holohedral isotropic materials, 
respectively. 

We shall now make the assumption9 that the material 
is such that J=O when E=O and ~=O. Then a2=0 in 
(5.1) and (5.3). In the first of these cases the consti­
tutive equation takes the form (5.2), i.e., the first-order 
constitutive equations for hemihedral and holohedral 
isotropic materials are the same. Taking ~=O in (5.2), 
we see that al is the ohmic electrical conductivity of the 
material. Taking E=O, we see that a temperature 
gradient "I: gives rise to an electrical current in the same 
direction, the Thomson effect. 

Turning now to the second-order constitutive equa­
tions, we see that if a2=0 and we take ~=O, the equa­
tions for the hemihedral and holohedral cases become 
the same and take the form1o 

(5.5) 

al is again the electrical conductivity and the coefficient 
a4 determines the magnitude of the Hall effect. If 
~,e0, the second-order constitutive equations differ 
in the holohedral and hemihedral cases. In the holo­
hedral case, we see that if B=O, it reduces to the first­
order constitutive equation. Taking E=O, we see that, 
if a temperature gradient ~ and magnetic induction 
field B exist in the material, then apart from the 
current resulting from the Thomson effect an additional 
current perpendicular to ~ and B will, in general, be 
produced (the Nernst effect). This effect may also arise 
in the hemihedral isotropic case, but in this case we 
observe the possibility of a further effect resulting from 
the presence in the constitutive Eq. (5.3) of the term 
asEX "1:. This leads to the possibilityll that if an electric 
field and nonparallel temperature gradient exist, a 
current may be produced at right-angles to both of 
these even if B=o. 

6. CONSTITUTIVE EQUATIONS FOR 
THE HEAT FLUX 

We now assume that the heat flux vector q is also a 
polynomial function of the vectors E, B, and ~. Since 
q is an absolute vector, we may, by considerations 
similar to those used in discussing the constitutive 
equation for the electrical current, derive a constitutive 
equation for the heat flux vector which is similar in 
form to (3.4) in the hemihedral case and to (4.6) in the 

9 This assumption need not necessarily be valid for all hemi­
hedral isotropic materials. 

to To the degree of approximation involved in deriving this 
equation, it is equivalent to the equation 

E=atJ+a4JXB, 
where at and a4 are constants. The latter equation is usually 
employed when a constitutive equation which describes the Hall 
effect is required. However, it is usuaIly derived from a considera­
tion of the mechanism which results in the Hall effect. Here, 
Eq. (5.5) and the remaining constitutive equations are derived 
purely from invariant-theoretical considerations. 

11 As far as the author is aware, this effect has so far not been 
observed. 
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holohedral case. In both cases, we merely replace J by q 
and bear in mind that the a's are not the same functions 
of their arguments as in the constitutive equations for 
the current density vector. The first- and second-order 
constitutive equations for q may be obtained in a 
manner similar to that used in deriving the first- and 
second-order constitutive equations for J. If we make 
the assumption that q=O when E=o and ~=O, we 
obtain as the first-order constitutive equation, in both 
the hemihedral and holohedral cases, 

(6.1) 

where the {3's are constants. 
The second-order constitutive equation for hemi­

hedral isotropic materials becomes 

q={31E+{33~+{34ExB+{36~XB+{36EX ~ (6.2) 

and that for holohedral isotropic materials becomes 

q={31E+{33~+{34EXB+{36~XB, (6.3) 

where the {3's are again constants. 
From Eq. (6.1) we see that {33 is the thermal con­

ductivity of the material. Provided {31 is not zero, we 
see that an electric field E in the material gives rise to 
a parallel heat flux. From Eq. (6.3), it is seen that for a 
holohedral isotropic material in which nonparallel 
electric and magnetic induction fields exist, a heat 
flux may be produced perpendicular to both of these 
(the von Ettinghausen effect). Also, if a temperat~re 
gradient and nonparallel magnetic induction field eXist 
in the material a heat flux may be produced perpen­
dicular to both of these (the Righi-Leduc effect). 

These effects may also be obtained in a hemihedral 
isotropic material. It is seen from Eq. (6.2) that, in 
addition if an electric field and nonparallel temperature 
gradient' exist in the material, a heat flux perpendicular 
to both of these may be produced.12 

7. CONSTITUTIVE EQUATION FOR THE 
MAGNETIC FIELD INTENSITY 

We assume that the magnetic field intensity H is a 
polynomial function of the vectors E, B, and ~, thus 

H=G(E,B,~). (7.1) 

Again, this constitutive equatio~ must be form-in­
variant under the group of transformations {S} de­
scribing the symmetry of the material. This implies 
that 

G(E,B,~) = ±S· G(E,B,~), (7.2) 

where S is a generic transformation of the group {S} 
and the positive or negative sign is taken accordingly 
as S is a proper or improper orthogonal transformation. 
E* B* ~* and E, B, ~ are related by (2.4). 

if the material is hemihedral isotropic, the restriction 
(7.2) implies, with (7.1), that H must be expressible in 

IS As far as the author is aware this effect has so far not been 
observed. 

the form 

H="YIB+Y2E+Y3~+"Y4EXB 
+"Y5~XB+Y6EX~, (7.3) 

where the "Y's are polynomial functions of the quantities 
(3.2). This result may be derived in precisely the same 
manner as the constitutive Eq. (3.4) for the electric 
current density, from the fact that the positive .sign 
applies in (7.2) for proper orthogonal transformations. 

If the material is holohedral isotropic, then (7.3) 
must be form-invariant under the central inversion 
transformations S= (-1, -1, -1). BY' using the results 
(4.1) and the relation H*=H, we obtain 

"Yl(E·B,~·B)B+"Y2(E·B,~·B)E+"Y3(E·B,~·B)~ 

+"Y4(E·B,~·B)ExB+"Y5(E·B,~·B)~XB 

+"Y6(E·B,~·B)EX~ 
="Yl(-E·B, -~·B)B-"Y2(-E·B, -~·B)E 

-"Y3(-E·B, --e·B)~-"Y4(-E·B, -~·B)EXB 
-"Y5(-E·B, --e·B)-eXB 

+"Y6(-E·B, -~·B)EX~, (7.4) 

polynomial dependence of the "Y's on E· E, B· B, ~.~, 
E· -e, and [E,~,B] being understood. It follows from 
(7.4) that "Yl and "Y6 must be polynomials of even 
degree in E· B and ~. B, while the remaining "Y's are of 
odd degree in these arguments. 

The constitutive equation for the magnetic field 
intensity H in a holohedral isotropic material may 
therefore be written in the form 

H="YIB+[ "Y2'E·B+"Y2" -e.B]E+[ "Y3'E·B+"Y3" ~·B]-e 
+[ "Y/E· B+"Y4" ~. B]EXB 

+["Y5'E·B+"Y5" ~·B]~XB+"Y6EX -e, (7.5) 

where the "Y's are polynomials in the quantities (4.4). 
By using a relation of the type (9.3), we may, without 

loss of generality, take "Y4"=0 or "Y5'=0 in (7.5). 
If we neglect terms in the constitutive Eq. (7.3) for 

H of higher degree than the first in E, B, and -e, we 
obtain the first-order constitutive equation for the 
magnetic field intensity in a hemihedral isotropic 
material: 

(7.6) 

where the "Y's are constants. Similarly, we may obtain 
from (7.5) the first-order constitutive equation for H 
in a holohedral isotropic material: 

(7.7) 

If we further assume that H=O when B=O, then 
"Y2="Y3=0 in (7.6) and it is seen that (7.7) represents 
the first-order constitutive equation for H for both­
holohedral and hemihedral isotropic materials. 

The second-order constitutive equation for H in a 
hemihedral isotropic material is, with H=o when B=O, 

H="YIB+"Y4EXB+"Y6-eXB, (7.8) 
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where the 'Y's are constants. The corresponding equation 
for a holohedral isotropic material is (7.7). 

8. THIRD-ORDER CONSTITUTIVE EQUATIONS FOR 
HOLOHEDRAL ISOTROPIC MATERIALS 

If, in the constitutive equations for a holohedral 
isotropic material, we neglect terms of higher degree 
then the third in E, B, and ~, we obtain, with the condi­
tion that H=O when B=O, 

J = (a1+allE· E+a12B· B+a13~' ~+a14E· ~)E 
+ (a3+a31E·E+a32B·B+aaa~· ~+aa4E· ~)~ 

+a4EXB+a5~XB+[a2'E·B+a2"~·B]B, (8.1) 
and 

H= ('Yl+'YllB·B+'Y12E· E+'Y13~' ~+'Y14E· ~)B 
+ ['Y2'E· B+'Y2"~' B]E+C'Ya'E· B+'Ya" ~ ·B]~, (8.2) 

where the a's and 'Y's are constants. The constitutive 
equation for q is similar in form to (8.1). 

We shall now consider some effects, additional to 
those discussed for the first- and second-order equations, 
the possibility of which is allowed by Eq. (8.1). If 
~=O, Eq. (8.1) becomes 

J= (a1+allE·E+a12B·B)E+a4EXB+ (a2'E·B)B. (8.3) 

Let us suppose that the vectors E and B are inclined 
at an angle <po We choose the reference system x in such 
a way that the Xl axis is parallel to E and the X2 axis 
is in the plane formed by E and B, so that E= (E,O,O) 
and B= (B cos<p, B sin<p, 0). It then follows from (8.3) 
that 

J 1= [a1+allE+ (a12+a2' cos2<p)B2]E, 

J 2=a2'EB2 sin<p cos<p, 

J 3=a4EB sin<p. 

(8.4) 

If all¢O, we have non-Ohmic electrical conductivity. 
The presence of a magnetic induction field B produces a 
change of current in the direction of E proportional 
to E2. Also provided that <p¢0 or 7r/2, and a/¢O, it 
also gives rise to a current proportional to B2 in the X2 
direction. The current density component J a is, of 
course, the Hall current given by the second-order 
constitutive equation. 

We now consider that E=O, but ~¢o. Equation (8.1) 
then becomes 

J= (aa+aa2B·B+aaa~· ~)~+a5~XB+a2"( ~·B)B. (8.S) 

We suppose that the vectors ~ and B are inclined at an 
angle <po Then, in a manner similar to that employed in 
discussing the case when ~=O but E¢O, taking 
~= (T,O,O) and B= (B cOS<p, B sin<p, 0), we obtain 

J 1 = [aa+aaaT2+ (aa2+a2" cos2<p )B2]r, 

J2=a/'rB2 sin<p cos<p, 

J a=a5TB sin<p. 

(8.6) 

If a33¢0, we have a nonlinear Thomson effect. The 

presence of a magnetic induction field B produces a 
change, proportional to E2, in the Thomson coefficient 
relating the temperature gradient and the current 
density in the direction of this gradient. Also, provided 
that <p¢0 or 7r/2, and a2"¢0, we obtain a current 
proportional to B2 in the X2 direction. The current 
density component J a is, of course, obtained from the 
second-order constitutive equations and is associated 
with the Nernst effect. 

Since the constitutive equation for the heat flux 
vector is similar to that for the electric current density 
vector, the effects of the magnetic induction field on the 
heat flux vector are similar to those on the electric 
current density. 

We shall now discuss the constitutive equation (8.2) 
for the magnetic field intensity in a similar manner. If 
~=O, but E¢O, the equation becomes 

H= ('Y1+'YllB·B+'Y12E·E)B+('Y2'E·B)E. (8.7) 

Then, choosing the reference system X so that 

B= (B,O,O) and E= (E cOS<p, E sin<p, 0), 

we obtain 

H 1= ['Y1+'YllE2+ (1'12+1'2' cos2<p)E]B, 

H2='Y2'EB sin<p cos<p and H3=0. (8.8) 

Similarly, if E=O, but ~¢O, Eq. (8.2) becomes 

H= ('Y1+'YllB·B+'Y13~· ~)B+ ('Ya" ~·B)~. (8.9) 

Then, taking B= (B,O,O) and ~= (T cOS<p, T sin<p, 0), we 
obtain 

HI = ['Y1+'YllB2+ ('Y13+'Ya" r2 cos2<p)]B, 

H2='Ya"r2B sinlO cOS<p and Ha=O. (8.10) 

9. APPENDIX 

If Oij denotes the three-dimensional Kronecker delta 
and eijk the three-dimensional alternating symbol, then1 

Oijeklm -OikeJlm+Oi/ejkm- Oimejkl= 0. (9.1) 

If Ai, B;, C;, and Di are the components of four vectors 
A, B, C, and D, then mUltiplying (9.1) throughout by 
A iB JC kDl, we obtain 

A;B;eklmCkDz-A,CiejlmBjDz+A;DiejkmBJCk 
-AmejkIB,CkDz=O. (9.2) 

This relation may be rewritten in vector notation as 

(A·B)CXD= (A·C)BXD- (A·D)BXC 
+[B,C,D]A. (9.3) 
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Computation of Order Parameters in an Ising Lattice by the Monte Carlo Method* 
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The long-range and short-range order parameters are computed for the Ising lattice using a Monte Carlo 
sampling scheme. The square lattice, the simple cubic lattice, and the body-centered cubic lattice are 
considered. In the three-dimensional calculations both the antiferromagnetic and ferromagnetic cases are 
considered as well as the coupling to an external magnetic field of various strengths. Good agreement is 
found where the results can be compared with the exact two-dimensional results, and in the three-dimen­
sional case the results agree well with those obtained from series approximations in the regions where the 
series approximations are valid. The present method appears to give good results for the short-range 
order even very close to the critical temperature, but in this neighborhood the long-range order estimate is 
crude. The computations were performed on the high-speed computer ILLIAC, located at the University 
of Illinois. 

I. INTRODUCTION 

I N a recent investigationl the Monte Carlo method 
was used to compute parameters describing the 

short-range and long-range order in a face-centered 
cubic binary alloy. That investigation was preceded by 
some computations2 of order parameters in a two­
dimensional Ising lattice3 as a test of the feasibility of 
the Monte Carlo method for this kind of calculation. 
This early work was quite successful and the continu­
ation of this work to a treatment of three-dimensional 
Ising lattices is the subject of the present paper. Since 
the early work on the two-dimensional lattice has not 
been previously reported in detail, it has been included 
in the present discussion. Two three-dimensional lattices 
are treated in the present work: the simple cubic and 
the body-centered cubic. This treatment includes both 
ferromagnetic and antiferromagnetic coupling, and 
coupling to an external magnetic field. Parameters 
describing the short-range order and the long-range 
order have been computed. 

The method used here was first used by Metropolis 
and others4 to treat the two-dimensional hard sphere 
gas, and it has been used subsequently by others5--8 for 
further computations on the equation of state of gases. 
The essence of this method can be described briefly as 
follows. A sequence of configuration states for the 

* Supported in part by the Office of Naval Research. 
t Present address: Dept. of Physics, University of Illinois. 
t Research Assistant visiting from Oxford University (Sep-

tember, 1958-June, 1959). 
1 L. D. Fosdick, Phys. Rev. 116, 565 (1959). 
2 L. D. Fosdick, Bull. Am. Phys. Soc. Ser. II, 2, 239 (1957). 
3 For a review article on the Ising model of ferromagnetism, see 

G. F. Newell and E. W. Montroll, Revs. Modern Phys. 25, 353 
(1953). 

• N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. 
Teller, and E. Teller, J. Chern. Phys. 21, 1087 (1953). 

5 M. N. Rosenbluth and A. W. Rosenbluth, J. Chern. Phys. 22, 
881 (1954). 

8 W. W. Wood and F. R. Parker, J. Chern. Phys. 27, 720 (1957). 
7 W. W. Wood and J. D. Jacobson, J. Chern. Phys. 27, 1207 

(1957). 
8 Z. W. Salsburg, J. D. Jacobson, W. Fickett, and W. W. Wood, 

J. Chern. Phys. 30, 65 (1959). 

system is developed using transition probabilities Pij, 

where Pi} gives the probability that state i will be 
followed immediately by state j. These transition 
probabilities are chosen to make the distribution of 
states in the sequence tend toward a Boltzmann dis­
tribution as the number of states in the sequence 
increases. At some point the sequence is truncated and, 
neglecting some of the initial states in the chain, the 
states of the truncated sequence are used as an ensemble 
to estimate the average value of certain system param­
eters; in the present case, estimates of the average value 
of the order parameters are computed. It seems appro­
priate to describe this approach as a "mathematical 
experiment" because it is somewhat analogous to ob­
serving the parameters directly in the real physical 
system, as in a physical experiment. In the latter case 
nature provides the averaging, whereas in the mathe­
matical experiment this is simulated on a model. It 
should be quickly pointed out, however, that the 
kinetics associated with the mathematical experiment 
do not necessarily represent those of the real system; 
they may represent the real system kinetics to some 
degree, but it is not essential to the method. This 
approach can provide a very good physical picture of 
the microscopic character of the system and it is 
therefore capable of providing new insights to the 
problem which might be very difficult to obtain from 
a more conventional, analytical approach in which the 
system is represented in a comparatively abstract 
fashion. 

Without a high-speed computing machine this 
approach would not be feasible. It is not surprising 
therefore that interest in this method has increased as 
these machines have become more available, and it is 
to be expected that this interest will continue to grow 
as the capabilities of these machines grow. The ILLIAC, 
a high-speed computing machine located at the Digital 
Computer Laboratory of the University of Illinois, was 
used to perform the computations described in the 
present work. 

547 
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II. GENERAL REMAlUCS ON APPLICATION OF 
MONTE CARLO METHOD TO ISING 

LATTICE PROBLEM 

The fundamental ideas of the method which was 
used in these computations have been discussed in the 
references cited in the introduction, especially footnote 
references 1, 4, and 6. A familiarity with these ideas 
will be assumed and here our attention will be directed 
at their application to the Ising lattice problem. 

Each site of the Ising lattice has an associated two­
valued spin coordinate Jl. (k) for the kth site; Jl. (k) = + 1 
or -1, corresponding to the two allowed orientations of 
the spin on the kth site. The ith configuration state of 
a lattice of N sites is completely described by the 
N-component vector l'i, whose components are the N 
spin coordinates, Jl.i(k). The energy of this spin array 
is assumed to be due to nearest-neighbor interactions 
and the interaction with an external magnetic field. In 
particular, the energy of the ith configuration is given 
by 

Ei= -1 L(l) Jl.i(k)Jl.;(k')+H L Jl.i(k), (1) 
k'.k k 

where the first sum extends over all pairs of sites in the 
lattice such that k and k' are nearest neighbors and the 
second sum extends over all sites in the lattice. It will 
be recognized that the change in the coupling energy 
for a nearest-neighbor pair going from a state of 
parallelism to a state of antiparallelism is 21, i.e., 
E(N)-E(tt) = 21. The array is ferromagnetic if 1 is 
positive and antiferromagnetic if 1 is negative. On 
referring again to Eq. (1), it will be observed that the 
change in the energy arising from the external field 
coupling is 2H when a spin changes from a state of 
parallelism with the field to a state of antiparallelism 
with the field, i.e., E(t)-E( ... )=2H. Since it is con­
venient and customary to use parameters which are the 
ratios of the coupling energies to kT, where k is the 
Boltzmann constant and T is the absolute temperature, 
we define K=1/kT and L=H/kT. 

The order in the system, at equilibrium, is computed 
as a function of K and L. To describe the short-range 
order, the parameters J;(j) are used where Ji(j) is the 
fraction of jth neighbor sites which are occupied by an 
antiparallel pair of spins in the ith configuration 

where aU) is the number of jth neighbors of a lattice 
site, and the summation extends over all pairs of sites 
k and k' where k and k' are jth neighbors. Using 
Boltzmann statistics, the average value of this param­
eter for jth neighbors is given by the usual formula 

J(j) = Li Ji(j)e-Ei/kT /L,. e-EilkT, (3) 

where the summations extend over all configuration 
states of the system. In the Monte Carlo estimation of 

this quantity the expression on the right is replaced by 
the average over a small sample of Ji(j)'S drawn from 
a distribution in which the ith configuration state tends 
to be proportional to exp ( - Ei/ kT). This proportionality 
holds strictly only in the limit as the sequential process 

. of generating new configurations is continued inde­
finitely. However, the proportionality usually holds 
with sufficient accuracy for worthwhile results when 
the sequence is truncated in order to keep the computing 
time within reasonable bounds. For the two-dimensional 
square lattice and the body-centered cubic lattice the 
average of the first-neighbor order parameter J(I) is 
estimated. In the simple-cubic lattice both J(I) and 
J(2) are estimated. 

The long-range order of the ith configuration state 
is described by the parameter Si, where 

1 
Si=-I L Jl.i(k) I , 

N k 

(4) 

the summation extending over all sites. The average 
value of Si, denoted by S, is given by the formula 
analogous to Eq. (3) and the Monte Carlo estimate of 
S is likewise obtained from sampling as indicated 
before for J(j). Estimates of S have been obtained for 
the two three-dimensional lattices. It is known that 
for an infinite lattice and L=O, S vanishes at a critical 
value of K, denoted by Kc, and that for K5:.Kc, S 
remains equal to zero. The finite system used in these 
computations can only be expected to approximate 
this behavior, and one expects a rapid decrease in S 
in the neighborhood of Kc, but S will remain nonzero, 
though small, even when K «K c. When the external 
magnetic field is zero, S can be identified as the spon­
taneous magnetization per spin.9 For a lattice composed 
of an infinite number of spins a very small positive 
magnetic field removes all states of the lattice from the 
ensemble average for which the total spin is negative, 
but with a finite lattice this is not strictly true. This 
approximation to the spontaneous magnetization of an 
infinite array will be worst near the critical temperature 
where the difference in behavior between the infinite 
system and the finite system becomes particularly im­
portant. 

The procedure for generating the ensemble of con­
figurations over which the averaging is to be performed 
is very similar to the one described in footnote reference 
1. We are given a lattice of N sites which is in a par­
ticular configuration state; say i; hence Jl.i(k) is known 
for all k. A site of the lattice is selected and the change 
in energy fiE which would accompany a reversal in 
orientation of the spin on that site is computed. If 
flE5:.0, then the spin is reversed and if fiE>O, then 
the spin orientation is reversed with probability 
exp( -flE/kT). The latter process is done by generating 
a pseudo-random number ~ from a uniform distribution 

~ C. N. Yang, Phys. Rev. 85, 808 (1952). 
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on the interval (0,1) and if ~<exp(-t:.E/kT), the spin 
orientation is reversed; otherwise it is not reversed. 
Next, another site is selected and the process is repeated. 
The sites were numbered and selected sequentially and 
when all sites of the lattice had been treated once, as 
just described, an iteration of the calculation was said 
to be completed. At the end of an iteration the values 
of the order parametersfi(j) and Si were recorded; the 
details of this step varied somewhat in the different 
calculations and they will be described more fully in 
the following sections. The iterations continued until a 
condition for stopping was satisfied at which point the 
last R samples which were generated were used to 
compute the averages 

1 1 1 
f(l)=- L fi(l), f(2)=- L fi(2), S=- LSi, (5) 

R (i) R (i) R (i) 

where in each case the sum extends over the last R 
samples. In the three-dimensional computations the 
stopping condition was based on a comparison of 
results from two independent computations, similar to 
that described in footnote reference 1; the details will 
be presented later. 

It is not difficult to see that this process satisfies the 
necessary and sufficient conditionsl for producing a 
sequence of configurations which tends toward a 
Boltzmann distribution as the length of the sequence 
tends toward infinity. The ergodic condition is satisfied: 
Any pair of configurations can be linked by at least 
one finite sequence of configurations in which one spin 
at a time is reversed, and the probability for this 
reversal is nonzero. The other condition is also satisfied: 
The 2N component probability vector lJI' with com­
ponents 

'¥i=e-Ei/kT/Lie-EilkT (i=1,2, "',2N ) (6) 

is an eigenvector, with eigenvalue unity, of the sto­
chastic matrix P, whose elements Pij are the transition 
probabilities linking the 2N configuration states of the 
lattice in a complete iteration. This can be seen as 
follows. The stochastic matrix P may be regarded as 
the product of N matrices P(l), P(2)·· ·P(N), where 
P(k) has components pij(k) which are the probabilities 
for a transition from state i to j by a reversal in the 
orientation of the spin on site k. For given i there is 
exactly one j, say j', for which pij(k);eO and pii(k) 
= l-Pij.(k). If Ei>Ej' we have pij·(k) = 1 and if 
Ei<Ej., we have Pij'(k)=exp[ - (Ej.-Ei)/kT]. Simi­
larly, for given j there is exactly one i, say i' for which 
p.j(k) ~O, where i' ~ j. In short, there will be either 
one or two nonzero elements in every row and column 
of P(k). Consider the product 

lJI'P(k)= ... , 

and in particular 
(7) 

Let Pi'j(k) be the nonzero off-diagonal element in the 
jth column of P(k). If E i• ?:.Ej, then Pi'i= 1 and 
pjj=l-exp[- (Ei·-Ej)/kT] and it follows from Eqs. 
(6) and (7) that 

cPj= Ae-Ei ' /kT +[1- e-(Ei'-Ej) /kT]Ae-E;/kT 

hence 

where 

If Ei.<Ej, then pi'j=e-(E;-Ei.)/kT and pjj=O and it 
follows from Eqs. (6) and (7) that 

cPj= [e-(E;-Ei.)/kT]Ae-Ei ./kT, 

hence 
cPj=Ae-Ej /kT. 

It follows that "'=lJI', hence lJI' is an eigenvector of 
P(k) with eigenvalue unity and since this is true for all 
k it is true for the product P=P(l) P(Z)·· ·P(N). It 
is to be noted that this result is independent of the 
order in which the sites are numbered. This result is 
also true for 

1 N 
Q=- L P(k), 

N k=l 

which is the transition matrix when a site is selected 
at random and the same process performed on it. The 
details of the individual computations follow. 

III. SQUARE LATTICE 

The two critical items affecting the practicality of 
the method, namely the rate of convergence of the 
generated ensemble to a Boltzmann distribution and 
the size of the lattice needed for worthwhile results, 
were investigated using this model. The short-range 
order parameter f(l) was computed and compared with 
the exact value for an infinite system. lO The com­
putations were made at different values of the parameter 
x=e-2K and with zero external field, L=O. Periodic 
boundary conditions were imposed by linking the left 
edge of the lattice to the right edge by nearest-neighbor 
bonds and similarly the top edge was linked to the 
bottom edge. 

The lattice configuration was represented by binary 
numbers in the computer, with each binary digit cor­
responding to a lattice site and the value of that digit 
representing the orientation of the spin on the site. In 
each iteration of the computation the sites were selected 
for consideration systematically. The successive sites 
along a row were considered until the end of the row 
was reached and then the sites in the next adjacent row 
were considered until finally all N sites had been con­
sidered. 

At the completion of one iteration the value of fi(l) 
was recorded. To examine the behavior of estimates of 
f(l) as it is computed at different points along the 

10 B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949). 
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TABLE 1. Values of /(l,j) obtained for the square lattice. The exact value for /(1) (footnote reference 10) appears at the 
end of the right-hand column for every x. 

10XI0 lattice 20X20 lattice 37X37 lattice 

Initially Initially Initially Initially Initially Initially 
x j ordered disordered ordered disordered ordered disordered 

0.30 1 0.0209±0.0020 0.0428±0.OOS4 0.0222±Q.001O 0.0760±0.004S 0.0229±0.OOO6 0.0444±0.0037 
2 0.O238±O.0023 O.O24O±O.0023 O.O220±O.0009 O.O220±O.0012 O.O230±O.OOO5 0.O228±O.0006 
3 0.0246±O.0021 0.0246±0.0021 0.0234±0.001l 0.0228±0.0013 0.0223±0.OOO6 0.0227 ±0.OOO6 
4 0.0199±0.0019 0.0194±0.0019 
5 0.0204±0.0019 0.0200±0.0018 
6 0.0208±O.0020 0.0212±0.0021 /(1)=0.0223 (exact) 

0.40 1 0.0956±0.0044 0.1338±0.0074 0.1043±0.0026 0.1198±0.0041 0.1026±0.0015 0.1497±0.0037 
2 0.1083±0.0043 0.1194±0.0061 0.0992±0.0021 0.1007 ±0.0023 0.l1S5±0.0013 0.1104±O.0017 
3 0.0896±0.0045 0.1052±0.OOS2 0.1027 ±0.0026 0.1076±0.0027 0.1112±0.0016 0.1192±0.0013 
4 0.0884±0.OO44 0.0947 ±O.OO46 
5 0.0912±0.0044 0.094O±0.OOSO 
6 0.0867 ±0.OO41 0.0886±0.0043 /(1)=0.1074 (exact) 

0.43 1 0.1650±0.OOSO 0.1702±0.OOS8 0.1656±0.0036 0.1879±0.0041 0.1819±0.0017 0.1859±0.0028 
2 0.1568±O.0053 0.1802±0.OO66 0.1748±O.0032 0.1841±0.0030 O.1833±0.0015 0.1968±0.0014 
3 0.1768±0.0070 0.1690±0.0061 0.1708±0.003O 0.1630±0.OO32 0.1759±0.0018 0.1958±0.0014 
4 0.1436±0.0056 0.1621±0.OO55 
5 0.1479±0.OO55 0.1501±0.OO58 
6 0.1640±0.OO61 0.1403±0.OO52 /(1)=0.1900 (exact) 

0.45 1 0.2085±0.OO57 0.2024±0.OOS8 0.2145±0.OO28 0.2091±0.0029 0.2127 ±0.OOI8 0.2186±0.OO22 
2 0.1858±0.OO55 0.2170±0.OO59 0.2162±0.0032 0.2236±O.OO24 0.2236±0.OOl1 0.2293±O.0012 
3 0.2061±0.0062 0.2131±0.OOS6 0.2718±O.OO27 0.2305±0.OO24 0.2271±0.OOl1 0.2279±O.0014 
4 0.1892±0.OO51 0.lSOO±O.OOS7 0.2316±0.0024 0.2256±O.OO3O 
5 0.1968±0.OO48 0.1986±0.OOS2 
6 0.2018±0.OO58 0.2110±0.OOS5 /(1)=0.2245 (exact) 

0.50 1 0.2820±0.OO53 0.2904±O.0045 0.2833±0.OO26 0.2898±0.OO21 0.2784±0.OOI6 0.2838±0.0018 
2 0.2808±0.0052 O.2812±0.0043 O.2770±0.0021 O.2778±O.0021 0.2846±0.0013 O.2863±O.OOl1 
3 0.2788±0.OO43 0.2756±0.0049 0.2827 ±0.0022 O.2839±0.0022 0.283O±0.0012 0.2838±O.0018 
4 0.2682±0.0054 0.2841±0.0049 
5 0.2721±0.0046 0.2756±0.0045 
6 0.2804±0.0039 0.2906±0.0042 /(1)=0.2834 (exact) 

0.60 1 0.3616±O.OO38 0.3652±0.0036 0.3568±0.OO22 0.3583±0.OO18 0.3554±0.OO14 0.3561±0.OO12 
2 0.3606±0.OO36 0.3560±0.0038 0.3533±0.OOI7 0.3582±0.OO20 0.3562±0.0009 0.3574±O.OO10 
3 0.3620±0.0033 0.3607 ±0.0037 0.3564±0.OOI5 0.3543±0.OO20 0.3562±0.0009 0.3556±O.0009 
4 0.3500±0.OO4O 0.3571±0.0036 
5 0.3570±0.OO37 0.3597 ±0.0037 
6 0.3506±0.OO38 0.3504±0.0041 /(1)=0.3570 (exact) 

0.70 1 0.3976±0.OO35 0.4176±0.0038 0.3964±0.0035 0.4022±0.0016 0.4001±0.OO35 0.4076±O.OOl1 
2 0.4122±0.0035 0.4118±0.OO33 0.4055±0.OO20 0.4062±0.OOI7 0.4068±0.0009 0.4078±0.0009 
3 0.4135±0.0028 0.4020±0.0034 0.4037 ±0.0015 0.4049±0.OO16 0.4027 ±0.OOO8 0.4048±0.OO10 
4 0.3918±0.0034 0.3924±0.0033 
5 0.4099±0.0036 0.4172±0.0036 
6 0.4088±0.0035 0.3998±0.0042 /(1)=0.4056 (exact) 

0.80 1 0.433O±O.0041 0.4356±0.0033 0.4301±0.0048 0.4512±0.0016 0.4116±0.0070 0.4413±0.OOO8 
2 0.4376±0.OO31 0.4312±0.0030 0.4424±0.OO15 0.4475±0.0016 0.4425±0.001O 0.4421±0·OOO8 
3 0.4472±0.0030 0.4331 ±0.OO36 0.4426±0.OO15 0.4367 ±0.0018 0.4441±0.OOO7 0.4371±0.0009 
4 0.4500±0.0037 0.4424±0.OO33 
5 0.4485±0.0028 0.4493±0.OO29 
6 0.4345±0.OO29 0.4498±0.OO3O /(1)=0.4432 (exact) 

chain, the sequence of values of 1.(1) was broken into 
groups of 128 and the average and standard deviation 
computed for each of the groups: the sequence of aver­
ages thus generated will be denoted by 1(1,1), 1(1,2), 
1(1,3)·· '. 

In order to observe the effect of the choice of the 
initial configuration on these results, all of the com­
putations were performed twice, using quite different 
starting conditions for the two cases. In one case the 
initial configuration was one of complete order with all 
spins up; that is, Jl (k) == 1 for all k. In the other case 
the initial configuration was highly disordered; this 
configuration was generated by assigning the values of 
p.(k) such that there would be equal probability for up 
and down spins. 

The computations were performed for three different 
lattice sizes: 10 sites on an edge, 20 sites on an edge, 
and 37 sites on an edge. The computing time to complete 
one iteration was approximately 2 sec for the lOX 10 
lattice and this time varies linearly with the number of 
sites in the lattice. The results of the calculation of I(l,j) are shown in 
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Table I. From the exact treatment of the square Ising 
lattice it is known that there is a second order phase 
transition, located at x=0.4142, at which the configu­
rational specific heat becomes logarithmically infinite. 
Since the specific heat is proportional to the variance 
of the energy 

d(E)/dT<x ([E- (E)]2), 

it is not surprising that the strongest fluctuations and 
largest errors in the results occur in the neighborhood 
of x= 0.43.· It is interesting to note that standard devi­
ations vary proportionally to 1/Nl as is to be expected 
for purely statistical reasons. It is satisfying to find that 
a prohibitively large lattice, and the 37X37 lattice 
approaches this, is not really needed for a good estimate 
of J(l). In fact the difference in accuracy between the 
two larger systems can hardly be called significant. 
Hence, it appears that beyond the 20X20 lattice a large 
increase in N, and consequently a large increase in 
computing time, would be needed for a small increase in 
accuracy. It also appears that the effects of the initial 
configuration are lost rather quickly and in fact the 
average taken over the first sample of 128 configurations 
is frequently in good agreement with the exact value: 
this is particularly true for the system which started 
from a completely ordered configuration. It should be 
pointed out here that the very first configuration, the 
completely ordered one or the disordered one, is not 
included in the averaging. 

IV. SIMPLE CUBIC LATTICE 

The ILLIAC program which was prepared to do the 
computations on the simple cubic lattice is more 
elaborate than the one which was prepared for the 
square lattice computations. An important part of the 
present program is a test to determine a point in the 
sequence of configurations at which the computation 
of the ensemble averages is to commence. This test, 
called the convergence test, resembles a similar test 
used in the work described in footnote reference 1, and 
its present application is explained in the following. 

The problem of obtaining a reasonably accurate 
result without using enormous amounts of computing 
time depends partly, as mentioned earlier, on the rate 
of convergence of the generated ensemble to a Boltz­
mann distribution. The work on the square lattice has 
shown that in many cases the convergence is quite rapid. 
With the square lattice the exact solution provides a 
guide for checking the ensemble averages, but when the 
exact solution is not known a rule must be made for 
selecting the point at which the averaging may 
commence. The problem of constructing such a rule 
is tricky. One might consider the successive values of 
a parameter, such as the short-range order parameter, 
and commence averaging where this sequence appears 
to be steady in some sense. This is dangerous for there 
may be two, or more, sets of states each of which has a 
relatively high probability of occuring, but which are 

linked by small transition probabilities. Such a situation 
would result in fairly steady sequential values for 
certain parameters except that here and there the 
apparent equilibrium value of the parameter might 
change abruptly. It may happen that these abrupt 
changes occur so infrequently that they would not even 
occur in a very long (on the computational time scale) 
computation. In this instance an average taken over 
the apparently steady sequence might give a very 
incorrect result. Since the region in phase space which 
contributes significantly to the ensemble average 
becomes broader near a phase transition it is to be 
expected that this phenomenon is likely to occur in 
such a region. It is true that no such difficulties were 
ever apparent in the two-dimensional lattice compu­
tations but similar difficulties have been encountered 
in the hard-sphere equation of state computations. 

The rule which has been adopted for the present 
computations is characterized by the fact that two 
statistically independent sets of results are developed 
and the point of convergence is established when these 
results agree within a given margin of error. Two distinct 
lattices are used to develop two statistically independent 
sequences of configurations. One of the sequences starts 
from a configuration of complete order, while the other 
starts from a disordered configuration, just like the two 
initial configurations discussed in the square lattice 
computations. The difference between the present case 
and the former is that now the two sequences are 
developed simultaneously and hence may be compared, 
one with the other, as the two sequences are developed. 
We denote the sequence starting from a configuration 
of complete order as the low-temperature (LT) 
sequence. Correspondingly, the sequence starting from 
a disordered configuration is called the high-temperature 
(HT) sequence. The generation of the ensemble is 
divided into three stages. In the first stage an LT 
sequence of Mo configurations and an HT sequence of 
Mo configurations are developed. Three parameters 
associated with each configuration are held in the com­
puter store: Ji(l), Ji(2), and Si. In the second stage the 
average of 10(1) taken over the last Mo configurations 
is computed for each sequence and similarly for Ji(2) : 
these are designated [f(l)JLT, [J(l)JHT, [J(2)JLT, and 
[J(2)JHT. The convergence test is passed when the 
following two inequalities are satisfied for the first time: 

I [J(1) JLT- [J(1) JHT I 
--------<El, (8a) 

[J(1) JLT+[J(l) JHT 

I [j(2) JLT- [f(2) JHT I 
-------<E2, (8b) 

[J(2) JLT+[J(2) JHT 

where El and E2 are small positive numbers. If both 
conditions are not satisfied a new configuration is 
generated for the LT sequence, and for the HTsequence. 
The oldest information in the sequence, namely, that 
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TABLE II. Summary of results from the simple cubic .lattice. The superscript "a" on the ID number indicates the large 
(16X 16X 16) lattice. 

ID K L S f(l) f(2) Mo dM Total 

1 0.5000 0 0.9919±0.0004 0.0079±0.0003 0.0080±0.0003 50 50 156 
2 0.4500 0 0.9823±0.0009 0.0169±0.0007 0.0174±0.0008 25 25 55 
3 0.4000 0 0.9699±0.0014 0.0280±0.001O 0.0293±0.0011 25 25 62 
4 0.3380 0 0.9424±0.0011 0.0516±0.0006 0.0549±0.0007 100 300 403 
5 0.2857 0 0.8653±0.006O 0.1073±0.0021 0.1181±0.0026 50 50 102 
6 0.2500 0 0.7440±0.0025 0.1853±0.0011 0.2096±0.0013 100 300 400 
7 0.2381 0 0.6551±0.006O 0.2286±0.0024 0.2623±0.0029 50 50 161 
8- 0.2381 0 0.6486±0.0024 0.2313±0.001O 0.2652±0.0013 50 50 100 
9 0.2273 0 0.4976±0.0090 0.2841±0.0024 0.3315±0.0031 50 50 116 

10 0.2174 0 0.3054±0.0123 0.3301±0.0026 0.3891 ±0.0033 50 50 100 
11- 0.2174 0 0.1883±0.0091 0.3405±0.0016 0.4013±0.0020 50 50 100 
12 0.2000 0 0.1603±0.004O 0.3713±0.0007 0.4344±0.0008 100 300 400 
13- 0.2000 0 0.0781±0.0062 0.3708±0.0013 0.4341±0.0017 50 50 100 
14 0.1667 0 0.0819±0.0022 0.4047 ±0.0005 0.4639±0.0005 100 300 400 
15 0.1430 0 0.0686±0.0018 0.4211 ±0.0004 0.4755±0.OOO3 100 300 400 
16 0.1250 0 0.0563±0.0030 0.4329±0.0007 0.4818±0.0006 50 50 100 
17 0.2500 0.0625 0.8184±0.0032 0.1449±0.0017 0.1599±0.0020 50 50 102 
18 0.2273 0.0625 0.7354±0.0044 0.1958±0.0021 0.2192±0.0025 50 50 101 
19 0.2000 0.0625 0.5529±0.0062 0.2847 ±0.0024 0.3237 ±0.0028 50 50 100 
20 0.1667 0.0625 0.3284±0.0071 0.3678±0.0018 0.4179±0.0021 50 50 100 
21 0.1250 0.0625 0.1834±0.0052 0.4203±0.OOO9 0.4620±0.OOO8 50 50 100 
22 0.0500 0.0625 0.1025±0.0086 0.4709±0.0009 0.4946±0.0007 25 25 50 
23 -0.1000 0.0625 0.0680±0.0112 0.5525±0.0008 0.4893±0.0010 25 25 50 
24 0.338 0.1250 0.9601±0.001O 0.0372±0.0007 0.0388±0.OOO8 50 50 128 
25 0.2857 0.1250 0.9158±0.0018 0.07 46±0.0012 0.0797 ±0.0014 50 50 121 
26 0.2500 0.1250 0.8683±0.0023 0.1116±0.0014 0.121O±0.0016 50 50 105 
27 0.2381 0.1250 0.8383±0.0022 0.134O±0.0013 0.1459±0.0015 50 50 105 
28 0.2273 0.1250 0.8094±0.0025 0.1533±0.0014 0.1681±0.0017 50 50 105 
29 0.2174 0.1250 0.7678±0.0054 0.1788±0.0024 0.1972±0.0028 50 50 100 
30 0.2000 0.1250 0.6917 ±0.0053 0.2249±0.0023 0.2502±0.0028 50 50 100 
31 0.1667 0.1250 0.5303±0.0050 0.3084±0.0019 0.3445±0.0022 50 50 100 
32 0.1250 0.1250 0.3415±0.0045 0.3880±0.0013 0.4286±0.0014 50 50 100 
33- 0.1250 0.1250 0.3369±0.0019 0.3892±0.OOO6 0.4297 ±0.OOO7 50 50 100 
34 0.0750 0.1250 0.2145±0.0060 0.4424±0.001O 0.4722±0.001O 25 25 50 
35 -0.1000 0.1250 0.0920±0.0096 0.5505±0.0009 0.4871±0.0011 25 25 50 
36 -0.2000 0.1250 0.0613±0.0023 0.6266±0.0023 0.4342±0.0031 25 25 50 
37 0.2857 0.2500 0.9390±0.0013 0.0562±0.0009 0.0587 ±0.0010 50 50 109 
38 0.2381 0.2500 0.8966±0.0018 0.0909±0.0012 0.0969±0.0013 50 50 103 
39 0.2000 0.2500 0.8127 ±0.0024 0.1548±0.0014 0.1670±0.0016 50 50 102 
40 0.1250 0.2500 0.5655±0.0034 0.3082±0.0015 0.3341±0.0016 50 50 100 
41 0.0750 0.2500 0.3965±0.0053 0.3938±0.0016 0.4175±0.0016 25 25 50 
42 0.0625 0.2500 0.3678±0.0050 0.4091±0.0013 0.4303±0.0013 25 25 50 
43 0.0250 0.2500 0.2896±0.0054 0.4486±0.0012 0.4586±0.0011 25 25 50 
44 -0.0500 0.2500 0.1964±0.0038 0.5056±0.0007 0.4798±0.0006 50 50 100 
45 -0.1000 0.2500 0.1566±0.0038 0.5394±0.0007 0.4785±0.0007 50 50 100 
46 -0.1500 0.2500 0.1264±0.004O 0.5729±0.0008 0.4674±0.0008 50 50 100 
47 -0.2000 0.2500 0.1030±0.0037 0.6171±0.0013 0.4366±0.0015 50 50 100 
48 -0.2250 0.2500 0.0829±0.0025 0.6673±0.0034 0.3840±0.0041 25 25 61 
49 -0.2500 0.2500 0.0564±0.0014 0.796O±0.0024 0.2274±0.0029 50 50 122 
50 -0.2750 0.2500 0.0423±0.0019 0.8655±0.0023 0.1460±0.0026 25 25 67 
51 -0.3000 0.2500 0.0297 ±0.0017 0.9033±0.0020 0.104O±0.0023 25 25 81 
52 -0.3500 0.2500 0.0173±0.0007 0.9504±0.001O 0.0519±0.0011 50 50 106 
53 -0.5000 0.2500 0.0064±0.OOO6 0.9876±0.0006 0.0126±0.0006 25 25 79 
54 0.1875 0.7500 0.9473±0.0014 0.0498±0.001O 0.0513±0.0011 25 25 62 
55 0.1000 0.7500 0.8424±0.0026 0.1405±0.0016 0.1452±0.0017 25 25 52 
56 0.0500 0.7500 0.7450±0.0030 0.2165±0.0019 0.2216±0.0019 25 25 51 
57 -0.0250 0.7500 0.5793±0.0041 0.3381±0.0015 0.3324±0.0016 25 25 50 
58 -0.1000 0.7500 0.4350±0.0058 0.4377±0.0017 0.4OO1±0.0013 25 25 50 
59 -0.1500 0.7500 0.3624±0.0064 0.4915±0.0018 0.4206±0.0015 25 25 50 
60 -0.1875 0.7500 0.3143±0.0059 0.5331±0.0021 0.4223±0.0016 25 25 50 
61 -0.2500 0.7500 0.2199±0.0029 0.6561±0.0037 0.3416±0.0038 25 25 55 
62 -0.3000 0.7500 0.1157±0.0021 0.8374±0.0028 0.1613±0.0030 25 25 89 
63 -0.3750 0.7500 0.0469±0.0014 0.9408±0.0012 0.0589±0.0012 25 25 67 
64 0.338 1.250 0.9921±0.0004 0.0078±0.OOO3 0.0079±0.OOO3 50 50 101 
65 0.2000 1.250 0.9834±0.0007 0.0163±0.OOO5 0.0165±0.0005 50 50 101 
66 0.0500 1.250 0.9053±0.0014 0.0902±0.0019 0.0911±0.0014 50 50 100 
67 -0.0500 1.250 0.7670±0.0020 0.2103±0.0012 0.2065±0.0012 50 50 100 
68 -0.1000 1.250 0.6778±0.0023 0.284O±0.0011 0.2697 ±0.0011 50 50 100 
69 -0.1500 1.250 0.5852±0.0027 0.3578±0.0011 0.3239±0.0009 50 50 100 
70 -0.2000 1.250 0.5016±0.0033 0.4261±0.0012 0.3598±0.0008 50 50 100 
71 -0.2500 1.250 0.4221±0.0035 0.4960±0.0013 0.3754±0.0008 50 50 100 
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TABLE n.-Continued. 

ID K L S f(l) f(2) Mo AM Total 

72 -0.2750 1.250 0.3786±0.0061 0.5384±0.0027 0.3679±0.0021 25 25 50 
73 -0.3000 1.250 0.3131±0.0022 0.6216±0.0026 0.3169±0.0023 50 50 129 
74 -0.3250 1.250 0.2282±0.0033 0.7358±0.0032 0.2280±0.0028 25 25 52 
75 -0.3500 1.250 0.1690±0.0020 0.8088±0.0020 0.1711±0.0018 50 50 116 
76 -0.4000 1.250 0.0961±0.0020 0.8940±0.0017 0.0993±0.0015 25 25 58 
77 -0.5000 1.250 0.0298±0.0007 0.9686±0.0006 0.0307 ±0.OOO6 50 50 134 
78 0.2000 0.4000 0.8834±0.0022 0.1035±0.0015 0.1091±0.0017 25 25 64 
79 0.1750 0.3500 0.8171±0.0033 0.1543±0.0018 0.1645±0.0021 25 25 79 
80 0.1500 0.3000 0.7121±0.OO47 0.2251±0.0025 0.2430±0.0028 25 25 95 
81 -0.0500 0.1000 0.1080±0.0123 0.5233±0.0008 0.4964±0.0009 25 25 50 
82 -0.1000 0.2000 0.1364±0.0086 0.5443±0.0011 0.4821 ±0.0012 25 25 50 
83 -0.1500 0.3000 0.1544±0.0076 0.5687 ±0.0013 0.4675±0.0014 25 25 50 
84 -0.2000 0.4000 0.1604±0.0052 0.6035±0.0018 0.4341±0.0015 25 25 51 
85 -0.2500 0.5000 0.1260±0.0025 0.7397±0.0040 0.2806±0.0049 25 25 60 
86 -0.3000 0.6000 0.0863±0.0017 0.8622±0.0021 0.1404±0.0023 25 25 87 
87 -0.0500 0.2000 0.1679±0.0084 0.5133±0.0012 0.4871±0.0011 25 25 50 
88 -0.1000 0.4000 0.2468±0.0067 0.5182±0.0016 0.4629±0.0013 25 25 50 
89 -0.1500 0.6000 0.29l5±0.0059 0.5245±0.0018 0.441O±0.0013 25 25 50 
90 -0.2000 0.8000 0.3204±0.0055 0.5362±0.0020 0.4168±0.0015 25 25 50 
91 -0.2500 1.0000 0.3260±0.0055 0.5665±0.0024 0.3823±0.0017 25 25 50 
92 -0.3000 1.2000 0.2889±0.0030 0.6466±0.0039 0.3046±0.0036 25 25 111 
93 -0.0500 0.4000 0.3023±0.0052 0.4759±0.0014 0.4536±0.0013 25 25 50 
94 -0.1000 0.8000 0.4638±0.0051 0.4226±0.OO15 0.3886±0.0012 25 25 50 
95 -0.1500 1.2000 0.5635±0.0051 0.3736±0.OO18 0.3357 ±0.0014 25 25 50 
96 -0.2000 1.6000. 0.6321±0.0042 0.3313±0.OOI6 0.2958±0.0012 25 25 50 
97 -0.2500 2.0000 0.6898±0.0038 0.2906±0.0015 0.2574±0.0014 25 25 50 
98 -0.3000 2.4000 0.7282±0.0033 0.2595±0.0014 0.2314±0.0012 25 25 50 

pertammg to the configuration which occurred Mo 
iterations before the present point, is thrown out to 
make space for the information on the new configura­
tion. Thus, the order parameters for the last Mo con­
figurations in each chain are retained. As each new 
configuration is added to the LT sequence and to the 
HT sequence the convergence test is repeated. When 
the convergence test is finally passed the third stage 
of the computations begins. All of the values for li(1) 
in the two sequences are collected into one sum, Lli(1), 
and similarly for ji(2), and Si. As each new con­
figuration is generated in each sequence the values for 
li(1), li(2) , and Si are added to the corresponding sum. 
When t:..M new configurations in each sequence have 
been generated then the sums are divided by 
2(Mo+t:..M)=R, the number of configurations in the 
ensemble, to obtain the final estimates of the quantities 
1(1),1(2), and S. In the third stage of the computations 
the sum of squares of each of the parameters is also 
generated in order to calculate the standard deviations. 

amount of time required to complete one iteration for 
the 8X8X8 array was about 6 sec and it was approxi­
mately eight times this for the 16X 16X 16 array. As 
with the square lattice, periodic boundary conditions 
were always imposed. The sites were selected system­
atically for detailed consideration in an analogous 
fashion to the method used with the square lattice: 
successive sites in a row were treated, then successive 
rows and finally successive planes. 

This process does not ensure against the possibility 
of obtaining an erroneous answer because of the chains 
being trapped in a set ~f metastable states. It can be 
expected, however, that the chance of detecting such a 
situation is better than it would be if only one sequence 
was considered. Of course, if memory space and com­
puting time permit, then one can extend this method 
to include a still larger number of independent chains. 

The model for almost all of the computations had 8 
sites on an edge, and thus contained a total of 512 sites. 
Some computations were done on a model with 16 sites 
on an edge but because of the large amounts of com­
puting time required this work was rather limited. The 

The results of this computation are compiled in 
Table II. Order parameters S, j(1), and j(2) are shown 
as functions of K in Figs. 1, 2, and 3, respectively. In 
Table II the numbers in the first column are simply 
identification numbers (ID). The next two columns 
contain the energy parameters K and L. In the last 
three columns the numbers Mo and t:..M appearing 

0.6 f--+---t-....,,"--j--7''i---t-+--fHl'+--t-----j 

-0.3 -0.2 -0.1 0.1 0.2 0.' 0.' 
K-

FIG. 1. Long-range order S in the simple cubic lattice shown as 
a function of K for different L (solid curves) and L/K (dashed 
curves). 
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FIG. 2. First-neighbor short-range order parameter 1(1) in the 
simple cubic lattice shown as a function of K for different L (solid 
curves) and L/K (dashed curves). 

there have already been defined and the numbers in the 
column headed "total" are the total number of itera­
tions performed. Hence, in row 1, the values Mo=50, 
.1M = 50, total = 156 mean that 50 configurations were 
generated in the LT sequence and 50 configurations 
were generated in the HT sequence before the con­
vergence tests began (since Mo= 50); next, after con­
vergence 50 more configurations were generated in each 
sequence (since .1M = 50) to make a total of 200 con­
figurations in the ensemble; since the total number of 
iterations was 156 it follows that the convergence test 
was passed upon completion of the one hundred and 
sixth iteration and therefore the first 56 configurations 
in each sequence were discarded. In the columns fol­
lowing K and L the order parameters S, J(1), and J(2) 
are presented. The spread indicated for each order 
parameter is the standard deviation of the mean. The 
results are listed in order of decreasing K (i.e., increasing 
temperature for fixed J) in groups in which L is fixed. 
Near the end of the table, starting at ID= 78, some 
results are grouped together in which L/ K is fixed: 
note that L/K=H/J, the ratio of the external field 
coupling energy to the nearest-neighbor coupling 
energy, which is independent of T. In the figures the 
results are plotted for fixed L (solid lines) and for fixed 
L/K (dashed lines). Although the order parameters can 
be computed analytically at K = 0, the curves for 
constant L/K have not been extended through K=O 
because computations were not performed in the region 
of K = 0 and an extrapolation of these curves from the 
available data did not seem appropriate. 

It will be noted that three different values for Mo 
appear in the table: 100, 50, and 25. In the very first 
(chronologically) computations the large value of Mo 
was used together with .1M = 300, but because of the 
large amounts of computing time being absorbed it was 
decided to set Mo and .1M both at 50. Still later, for 
reasons of economizing on computing time the still 
smaller values Mo= 25 and .1M = 25 were introduced. 
In the first two cases the convergence test parameters 
were given the value 0.02 : fj = f2 = 0.02. In the last case, 

in an attempt to compensate for the relatively small 
value of Mo= 25 the parameters were given the value 
0.01: Ej = E2=0.01. 

Since the size effect can be expected to be most sig­
nificant in the zero field case in the neighborhood of the 
apparent critical temperature, some computations for 
a 16X16X16 array were made in this region: these 
have identification numbers 8, 11, and 13. When these 
are compared against the corresponding results for the 
8X8X8 system, it will be noted that there is a marked 
difference in the value of S for the two cases. The 
differences in the results obtained for the short-range 
order parameters on the other hand are relatively 
slight. Hence, it appears that although the estimate of 
of S is a crude approximation of its value for the infinite 
system in this region, the estimates of J(l) and J(2) 
are rather good. In the case of L=0.125 a computation 
was made with the large lattice (ID=33) in the region 
where S can be expected to be most sensitive to size 
effects. Comparison of these results with those for the 
8X8X8 lattice shows that the difference in the results 
obtained for S, as well as'for J(1) andJ(2), is slight. 
Hence, for this value and higher values of L the 
estimates of S can be expected to be fairly a good 
approximation to the value for an infinite system. 

In the antiferromagnetic region the value L/ K = - 6 
is a critical one. For L/ K greater in magnitude than 
this value the external field coupling dominates the 
nearest-neighbor coupling and at low temperatures the 
system tends to the state in which all spins are parallel 
to the external field. For L/ K smaller in magnitude 
than this value, the nearest-neighbor coupling domi­
nates, and at low temperatures the system tends to the 
state in which all nearest-neighbor spins are anti­
parallel. The series of computations at L/ K = - 4 and 
L/ K = - 8 illustrate the alternate behavior in the 
order parameters as the parameter K tends to large 
negative values (i.e., as T ~ 0 for J equal to a negative 
constant). It is interesting to notice that a relatively 
large number of iterations had to be performed in the 
computation with ID= 92 before the convergence con-

i o .• r----r-T--:;;~~~~-r---: 
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FIG. 3. Second-neighbor short-range order parameter 1(2) in 
the simple cubic lattice shown as a function of K for different L 
(solid curves) and L/K (dashed curves). 
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TABLE III. Comparison of results obtained from the Monte 
Carlo c31lculation with results obtained from evaluation of series 
expresSIons (footnote reference 3) for the simple cubic lattice. 

S /(1) 

Monte Monte 
K(L=O) Carlo Series Carlo Series 

0.5000 0.9919 0.9945 0.0079 0.0054 
0.4000 0.9699 0.9795 0.0280 0.0195 
0.3380 0.9424 0.9504 0.0516 0.0453 
0.2000 0.3713 0.3756 
0.1665 0.4048 0.4050 
0.1430 0.4210 0.4217 

dition was satisfied; in computations 85 and 86 a similar 
situation is noticed. The reason for this is that we are 
near the critical magnitude of K while below the critical 
magnitude of L/K. In the region K <0, -6K>L'C,0 
there are two states of minimum energy (the two states 
in which a~ neighbors are antiparallel), just as there 
ar~ .on the line K>O, L=O. Thus, there will again be a 
cntical value of K, around which configurations con­
sisting of mixtures of these two states will tend to 
persist. A~ the line L/ K = - 6 is approached, a third 
confi~uratlOn also assumes importance, that in which 
all spms are parallel to the external field. This explains 
why computation 92 (L/ K = -4) is even slower in 
cor:ver~er:ce than computations 8S and 86 (L/ K = - 2). 
It IS slgmficant that the existence of this situation is 
strongly brought to one's attention because of the rules 
which have been set up for convergence testing. In a 
test based on the examination of one sequence of con­
figurations there is a greater chance that one would 
fail to observe this near-critical situation since the 
sequence might remain entirely in one set of con­
figurations during the computations. Furthermore, it 
should be noticed that the standard deviations in these 
cases do not indicate anything unusual. One can infer 
from the small standard deviations that once the con­
vergence conditions were satisfied both the sequences 
remained in the one class of states which was most 
probable. 

For regions in which series expansions of the long­
range order and short-order can be used a comparison 
with results obtained from the present Monte Carlo 
method is possible. The series given in footnote reference 
31~ have been evaluated for a few cases and a comparison 
wlth the Monte Carlo results is shown in Table III. 

V. BODY-CENTERED CUBIC LATTICE 

The computations for this lattice are not as extensive 
as those for the simple cubic lattice. The convergence 
test is the same as the one used with the simple cubic 
lattice except that since only Si andfi(l) are calculated 

11 It should be pointed out that the series expressions given in 
~qs. (7.5)-(7.7) of this paper are incorrect. Each series is given 
III the form z-a (polynomial in z) whereas it should be -0( Inz 
+ (polynomial in z). 

during each iteration, just the first inequality (8a) is 
required to be satisfied. The value of El was set at 0.02. 
In the third stage of the generation of the configuration 
sequence (i.e., after the convergence condition was 
satisfied) the results for the two independent sequences 
were not combined but instead they were left separate. 
Thus, two separate estimates of the average were 
computed, one based on the HT sequence and the other 
based on the LT sequence. The LT sequence for positive 
K was started with an initial configuration in which all 
of the spins were parallel to one another and parallel 
to the external field. When K was negative the initial 
configuration for the LT sequence was one in which all 
nearest-neighbors were antiparallel. In the simple cubic 
la~tice computations the LT sequence always started 
WIth a configuration in which all spins were parallel to 
each other and to the external field, even when K was 
negative. 
. In mo.st of the calculations a model consisting of 

eIght umt cells on an edge, and therefore 1024 sites, 
was used. In a few cases a smaller lattice having four 
unit cells on an edge was used. Twenty seconds was 
req~ired to complete one iteration on the larger lattice. 
ThIS program was not quite as efficient in its use of 
computer time as the simple cubic lattice program. 

The sites were selected for detailed consideration in a 
systematic fashion. The two sublattices of the system 
were processed separately; that is, all the "center" sites 
were first processed sequentially, then all "corner" sites 
were processed sequentially to complete one iteration 
for one lattice. 

The results are compiled in Table IV and displayed 
graphically in Figs. 4 and 5. In Table IV the upper 
value for Sand forf(l) is obtained from the LTsequence 
and the lower value for S and for 1(1) is obtained from 
the HT sequence. In the initial calculations the larger 
samples with Mo=SO and ..1M=SO were computed, but 
to conserve on computer time this was later reduced 

t 1.0 

S 
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FIG. 4. Long-range order S in the body-centered cubic lattice 
shown as a function of K for different L (solid curves) and L/K 
(dashed curves). 



                                                                                                                                    

556 

ID 

4 

6 

8 

9 

10 

12 

13" 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 
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TABLE IV. Summary of results from the body-centered cubic lattice. The superscript "a" on the ID number 
indicates the small (four unit cells on an edge) lattice. 

K L s /(1) M. AM Total ID K 

0.3 o 

0.225 o 

0.225 o 

0.1875 0 

0.175 0 

0.175 0 

0.1625 0 

0.15 o 

0.1375 0 

0.125 o 

0.1 o 

0.1 o 

0.05 o 

0.05 o 

0.9804±0.OOO7 0.0189 ±0.0007 

0.9800±0.0018 0.0188±0.0012 

0.8966 ±0.0060 0.0908 ±0.0045 

0.8931 ±0.0129 0.0866 ±0.0064 

0.9067 ±0.0019 0.0831 ±0.0015 

0.9032 ±0.0032 0.0847 ±0.0016 

0.8023 ±0.0028 0.1607 ±0.0018 

0.7850±0.0095 0.1662 ±0.0034 

0.7127 ±0.0109 0.2173 ±0.0063 

0.6717 ±0.0202 0.225 I ±0.0088 

0.6884±0.0050 0.2251 ±0.0027 

0.6697 ±0.O102 0.2321 ±0.0035 

0.5216±0.0091 0.2981±0.0033 

0.5246 ±0.0103 0.2982 ±0.0032 

0.2159 ±0.0132 0.3734±0.0027 

0.1602 ±0.0101 0.3850 ±0.0017 

0.0938 ±0.0095 0.4030 ±0.0023 

0.1091 ±0.0071 0.4099±0.0013 

0.0784 ±0.0071 0.4179 ±0.0017 

0.0684 ±0.0051 0.4223 ±0.0013 

0.1366 ±0.01 03 0.4430 ±0.0030 

0.1433±0.0l07 0.4376±0.0029 

0.0441 ±0.0038 0.4404±0.0012 

0.0484±0.0036 0.4430±0.0010 

0.1031 ±0.0098 0.4635 ±0.0036 

0.1169 ±0.0074 0.4714 ±0.0022 

0.0453 ±0.0062 0.4684 ±0.0026 

0.0318±0.0024 0.4767 ±0.0018 

0.8809 ±0.0029 O. 1044 ±0.0023 

50 50 101 

50 50 100 

50 50 103 

50 50 101 

50 50 100 

50 50 109 

50 50 100 

50 50 101 

50 50 100 

50 50 100 

50 50 100 

50 50 100 

50 50 100 

50 50 101 

0.2 0.05 20 30 58 
0.8823 ±0.0031 0.1030±0.0024 

0.7136±0.0056 0.2l90±0.0032 
0.1625 0.05 20 30 56 

0.15 

0.125 

0.1 

0.15 

0.7137 ±0.0052 0.2185 ±0.0030 

0.6190±0.0093 0.2715 ±0.0042 
0.05 20 30 50 

0.6018±0.0073 0.2769±0.0036 

0.3135 ±0.0102 0.3869 ±0.0027 
0.05 20 30 50 

0.05 

0.15 

0.3165 ±0.0130 0.3853 ±0.0039 

0.1530±0.0076 0.4351 ±0.0014 

0.1516 ±0.0094 0.4330 ±0.0023 

0.7657 ±0.0047 0.1906±0.0031 

0.7663 ±0.0047 0.1902 ±0.0028 

0.6051 ±0.0062 0.2857 ±0.0034 

20 30 50 

20 30 51 

0.125 0.15 20 30 53 
0.6113 ±0.0063 0.2836 ±0.0030 

0.4388 ±0.0077 0.3652 ±0.0031 
0.1 0.15 20 30 50 

0.4441 ±0.0086 0.3632 ±0.0033 

0.2338 ±0.0064 0.4517 ±0.0018 
0.05 0.15 20 30 50 

0.15 0.25 

0.2349 ±0.0066 0.4472 ±0.0016 

0.8371 ±0.0034 0.1416±0.0025 

0.8338 ±0.0034 0.1430 ±0.0024 
20 30 51 

25 0.125 

26 0.1 

27 0.05 

28 0.175 

29 0.15 

30 0.125 

31 0.1 

32 0.05 

33 -0.05 

34 -0.1 

35 -0.15 

36 -0.2 

37 -0.25 

38 -0.05 

39 -0.15 

40 0.05 

41 -0.1 

42 -0.15 

43 -0.2 

44 -0.25 

45 -0.3 

46 -0.25 

47 -0.2 

L 

0.25 

s /(1) 

0.7361 ±0.0047 0.2130±0.0032 

0.7379 ±0.0042 0.2119 ±0.0027 

0.6084±0.0052 0.2905 ±0.0029 

M. AM Total 

20 30 50 

0.25 20 30 50 
0.6056 ±0.0053 0.2946 ±0.0030 

0.3789 ±0.0055 0.4089 ±0.0023 
0.25 20 30 50 

0.3712 ±0.0069 0.4108 ±0.0024 

0.9222 ±0.0037 0.0720±0.0030 
0.35 20 30 50 

0.9198 ±0.0020 0.0741 ±0.0018 

0.8718±0.0033 0.1143±0.0026 
0.35 20 30 50 

0.35 

0.35 

0.8795 ±0.0027 0.1081 ±0.0023 

0.8135 ±0.0034 0.1596 ±0.0026 

0.8076 ±0.0040 0.1649 ±0.0029 

0.7105±0.0042 0.2329±0.0027 

0.7164 ±0.004O 0.2293 ±0.0026 

0.4970±0.0051 0.3621 ±0.0025 

20 30 50 

20 30 50 

0.35 20 30 50 
0.4943 ±0.0049 0.3613 ±0.0024 

0.2451 ±0.0060 0.4922 ±0.0023 
0.35 20 30 50 

0.2463 ±0.0085 0.4916±0.0018 

0.1849±0.0050 0.5304±0.0020 
0.35 20 30 50 

0.1870±0.0059 0.5361 ±0.0017 

0.1387 ±0.0033 0.5954±0.0021 
0.35 20 30 51 

0.1360±0.0028 0.601O±0.0034 

0.0681 ±0.0024 0.8300 ±0.0050 
0.35 20 30 63 

0.35 

0.5 

0.0646±0.0021 0.8501 ±0.0028 

0.0296 ±0.0011 0.9386 ±0.0047 

0.0268 ±0.0015 0.9461 ±0.0017 

0.3431 ±0.0057 0.4591 ±0.0025 

0.3467 ±0.0065 0.4601 ±0.0157 

0.3060 ±0.0054 0.5278 ±0.0032 

20 30 51 

20 30 50 

0.75 20 30 50 
0.3044±0.0036 0.5321 ±0.0167 

0.8729 ±0.0025 0.1174 ±0.0021 
1.0 20 30 55 

0.8725 ±0.0025 0.1180±0.0022 

0.5127 ±0.0067 0.3947 ±0.0044 
1.0 20 30 50 

1.0 

1.0 

0.5133 ±0.0088 0.3945 ±0.0063 

0.4107 ±0.0056 0.4715 ±0.0036 

0.4119 ±0.0074 0.4738 ±0.0044 

0.2704 ±0.0035 0.6472 ±0.0055 

0.2734±0.0028 0.6472 ±0.0037 

0.1299 ±0.0038 0.8472 ±0.0054 

20 30 50 

20 30 56 

1.0 20 30 52 
0.1222 ±0.0025 0.8604 ±0.0028 

0.0655 ±0.0066 0.9247 ±0.0091 
1.0 20 30 50 

0.0548 ±0.0016 0.9409 ±0.0016 

0.2003 ±0.0078 0.7744 ±0.0091 
1.25 20 30 50 

2.0 

0.1921 ±0.0025 0.7877 ±0.0028 

0.6734±0.0057 0.2991 ±0.0051 

0.6728 ±0.0064 0.3002 ±0.0055 
20 30 50 
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to M 0= 20 and .1M = 30. In all cases the convergence 
parameter had the value El=0.02. 

Comparison of the results for the smaller lattice, 
having four unit cells on an edge, with those for the 
larger lattice shows again the relatively strong de­
pendence of the estimate of long-range order on lattice 
size. On the other hand the short-range order estimate 
again is not so sensitive to change in lattice size. Com­
parison of results for the LT sequences with those for 
the HT sequences indicates that although the differences 
between the pairs of results are not large, they are 
frequently larger than the spread indicated by the 
standard deviations. This is not surprising, since the 
correlation that exists between the sequential con­
figurations tends to reduce the standard deviation 
from what it would be if the configurations in the chain 
were completely independent. 

It is well known3 that the Ising model is equivalent 
to a model of a binary substitutional alloy and from 
this viewpoint one can compare the present results with 
the results of the measurement of long-range order in 

TABLE V. Comparison of results obtained from the Monte Carlo 
calculation with results obtained from evaluation of series ex­
pressions (footnote reference 3) for the body-centered cubic lattice. 

s f(1) 

Monte Monte 
K(L=O) Carlo Series Carlo Series 

0.300 0.9804 0.9806 0.0189 0.0188 
0.9800 0.0188 

0.150 0.3734 0.3955 
0.3850 

0.050 0.4684 0.4742 
0.4767 

,a-brass made by Chipman and Warren.12 This com­
parison appears in Fig. 6. The results of the Bethe13 

second approximation, according to Chipman and 
Warren, are also shown. In this figure the results have 
been normalized so as to make To coincide with the 
experimentally observed value of 465°C. For this nor­
malization we set K c=0.1616; this choice is discussed 
in the next section. The Monte Carlo results seem to fall 
closer to the experimental results than do the results 
of the Bethe second approximation at low temperatures. 
However, the relative position of the Monte Carlo 
curve depends on the normalization and the apparent 
deviation of the Monte Carlo curve from the Bethe 
curve and the experimental curve must be viewed with 
this in mind. Experimental measurements of the short­
range order which may be compared with the Monte 
Carlo results do not seem to be available. 

VI. ESTIMATION OF THE CRITICAL POINT 

The finite size of the model precludes the existence 
of a true critical point. Nevertheless the model does 

12 D. Chipman and B. Warren, J. App!. Phys; 21, 696 (1950). 
13 H. A. Bethe, Proc. Roy. Soc. (London) AlSO, 552 (1935). 

f 1.0 

f(l) 

0.6 f---f'.\-~.....-l---l----+----+--~ 

o 
-0.3 -0.2 -0.1 o 0.1 0.2 0.3 

K-

FIG. 5. First-neighbor short-range order parameter f(1) in the 
body-centered cubic lattice shown as a function of K for diflerent 
L (solid curves) and L/K (dashed curves). 

exhibit a behavior in a fairly narrow range of K which 
is similar to that associated with a critical point or 
"Curie point" in these systems: the long-range order in 
the ferromagnetic case falls off sharply to very small 
values and the specific heat, as indicated by the standard 
deviation of the short-range order, appears to go through 
a maximum. It would be desirable to obtain from this 
information on a finite lattice an estimate of the critical 
point Kc. One procedure for obtaining such an estimate 
would be to record the values of K at which the specific 
heat becomes maximal as the size N of the system is 
increased. Treating these results as a function of 1/ N 
and extrapolating to 1/ N = 0 would provide the desired 
estimate. Unfortunately this procedure demands such 
enormous amounts of computing time that it does not 
seem to be practical at the present time. Since it is 
convenient to have some definition of the apparent 
critical point simply so that it may be discussed without 
ambiguity we use here the value of K at which S=!; 
the value of K defined in this fashion is denoted by KI. 
This parameter has the virtue that it can be computed 
relatively accurately from a small number of calculations 
of S in the neighborhood of the apparent critical point 

~ 

~ ~plIMENJ -..: 

0.8 

8ETHE 2~ 1\ i I 
I 

I~ \\ 
0.6 

0.4 , 
~ONTE I CARLO 

0.2 

"'1 o 
100 200 300 400 500 600 

T {OC} ______ 

FIG. 6. Comparison of long-range order with experimental 
results on ~-brass by Chipman and Warren, and with the results 
of the Bethe second approximation. 
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and there is no need to make the disagreeable subjective 
decision which attends extrapolation of the long-range 
order above Keto zero, or extrapolation of the inverse 
susceptibility below Kc to zero. In addition to this it 
seems reasonable to expect that Ki will be close to Kc 
for the following two reasons. The abrupt vanishing of 
the long-range order at K c which one expects to find in 
three-dimensional lattices on the basis of the exact 
results for the infinite two-dimensional square lattice 
implies that Ki for an infinite three-dimensional lattice 
will lie very close to Kc. Yang's9 exact calculation of the 
long-range order in an infinite two-dimensional lattice 
yields a value for the fractional error (Kt-Kc)/Kc of 
about 1.6X2-9. The tighter coupling of the three­
dimensional lattice should make this error still smaller. 
The second reason is that the portion of the long-range 
order curve in the neighborhood of S=! is, relative to 
the "tail" of this curve, fairly insensitive to changes in 
lattice size and it is therefore expected that K, for the 
finite lattice of the model used here lies close to Ki and 
hence close to Kc for an infinite lattice. Unfortunately 
a quantitative estimate of this is. la~king, but t~e 
qualitative behavior of our results. mdlcates .that ~hIS 
conjecture is reasonable. For the SImple CUbIC lattIce, 
performing a linear interpolation between ID= 7 and 
ID=9 of Table II, we find 

Ki=0.2275 (simple cubic). 

For the body-centered cubic lattice, performing a linear 
interpolation between ID=7 and ID=8 of Table IV 
(averaging the upper and lower values of S first), we find 

Kt=0.1616 (body-centered cubic). 

This figure has been identified as K c f~r the n?rmali­
zation of the long-range order curve of FIg. 6 whIch was 
introduced in the preceding section. 

VII. CONCLUSION 

The Monte Carlo method appears to be well suited 
to the computation of short-range order in an Ising 
lattice. In the two-dimensional lattice, where the results 
can be checked against the exact treatment, the ac­
curacy of the Monte Carlo results for a 20X20 array 
is quite good. With one exception, which occurs in the 
immediate neighborhood of the critical temperature, 
the errors are 5 % or less. In the three-dimensional 
systems, arrays of 512 sites for the ~imple ~ubic an? 
1024 sites for the body-centered CUbIC prOVIded estI­
mates of the short-range order which were relatively 
insensitive to changes in the size of the array even in 
the neighborhood of the critical temperature. The long­
range order, on the other hand, was found to be r~t.her 
sensitive to changes in size of the array near the cntIcal 
temperature. The long-range order results in this region 
are therefore rather crude. An accurate estimate of 
long-range order very near the critical temperature by 
the present method does not seem to be feasible with 
present computing equipment, because the large arrays 
that seem to be required demand unreasonably long 
computation times. . 

As pointed out by Newell and Montroll,3 the pnmary 
reason for the continued interest in the Ising model is. 
that it provides a simple testing ground for new ap­
proximate methods of investigating systems of inter­
acting particles. The present results, except perhaps the 
long-range order in the zero field case near K c, are felt 
to be the most accurate ones now available and they 
have been tabulated here in considerable detail so that 
they may be readily compared with the results of other 
methods. Computations using a simple cubic lattice 
with second- and third-neighbor interactions are now 
in progress. 
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Erratum 

Linearized Plasma Oscillations in Arbitrary 
Electron Distributions 

U. Math. Phys. 1, 178 (196O)J 

GEORGE E. BACKUS 

Massachusetts Institute of Technology, 
Cambridge, Massachusetts 

Dr. F. Meyer of the Max-Planck-Institut fur Physik und 
Astrophysik in Munchen has kindly pointed out that the proof 
of theorem 3 is incorrect. The exponents in the denominators of 
Eqs. (27) and (28) should be 1 instead of 1, and an upper rather 
than a lower bound on I£(s) 1 is needed. 

A correct proof can be given if go' (u) is bounded and integrable 
and satisfies a Holder condition. These hypotheses, although 
stronger than those stated for theorem 3 in the paper, are satisfied 
by the Maxwell distribution; and they permit the application of 
Muskelishvili's results, thus implying that there are positive 
numbers yo and M such that I£(s) 1 <M if O<3's<Yo. Then in 
the inequality following (29), a must be replaced by M. 

With (27) and (28) rendered valueless, w is so far unspecified. 
We choose it so that go'(w)""O. Then, since go'(u) is continuous, 
there are positive numbers E and II such that Igo'(u) 1 >E if 
lu-wl <II. Hence 

l~lgO'(U)ld >. (""+6 du 
_~ u-s U",E Jw-6 Iu-w+iyl 2E{ln[H (1l2+y2)!J-Iny). 

Thus inequality (30) must be rewritten as 

Myllnyl!IK(s) 1 ~2E{ln[H(Il2+y2)!J-lny}. 

This inequality contradicts 1 K (s) 1 y ~ m and proves theorem 3. 
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